Diels-Alder reaction of benzylidene(cyano)methyl-1,3benzoxa/thiazoles as stable 1-azabuta-1,3-dienes

Masanori Sakamoto, ${ }^{*, a}$ Asae Nozaka, ${ }^{,}$Mino Shimamoto, ${ }^{a}$ Hideki Ozaki, ${ }^{a}$ Yoko Suzuki, ${ }^{a}$
Sanae Yoshioka, ${ }^{a}$ Mayumi Nagano, ${ }^{a}$ Kimio Okamura, ${ }^{b}$ Tadamasa Date ${ }^{b}$ and Osamu Tamura ${ }^{a}$
${ }^{a}$ Meiji College of Pharmacy, 1-35-23 Nozawa, Setagaya, Tokyo 154, Japan
${ }^{b}$ Organic Chemistry Research Laboratories, Tanabe Seiyaku Co. Ltd., Kawagishi, Toda, Saitama 335, Japan

Abstract

Diels-Alder reactions of benzylidene(cyano)methyl-1,3-benzothiazoles 2 and -1,3-benzoxazoles 3 as 1-azabuta-1,3-dienes are described. The dienes 2, 3, featuring stabilized imine moieties in the form of heteroaromatic rings, react with both electron-deficient and electron-rich dienophiles 7-9 to give corresponding cycloadducts $\mathbf{1 0}-15$ regioselectively. Cycloadditions of the intramolecular systems $\mathbf{1 8 c}, \mathbf{d}$ and 19c, d proceed smoothly via an exo-transition state, stereoselectively affording polycyclic compounds $20 \mathrm{c}, \mathrm{d}$ and 21c, d in good to excellent yields. X-Ray crystallographic studies of compounds 12e, 13a and 14b are also reported.

Introduction

A six-membered, nitrogen-containing ring system (piperidine ring) is a common partial structure of biologically active compounds. One of the most direct approaches to the system is obviously a nitrogen-containing hetero-Diels-Alder reaction. ${ }^{1}$ However, Diels-Alder reaction of 1-azabuta-1,3-dienes, simple α, β-unsaturated imines 1a, has been difficult due to the low reactivity of these substrates as dienes, side-reactions and instability arising from the imine moiety. ${ }^{1 a}$ To solve these problems, various 1 -azabuta-1,3-dienes carrying modified substituents at the 1 -position have been developed during the last decade. In particular, 1 -acyl 1b, ${ }^{2}$ 1-sulfonyl $1 \mathbf{c},{ }^{3}$ 1 -dimethylamino 1d, ${ }^{4}$ and 1 -phenyl $1 e^{5}$ derivatives are noteworthy. While amides $\mathbf{1 b}, \mathbf{c}$ tend to react with electron-rich dienophiles (inverse-type Diels-Alder reaction), the hydrazine 1d reacts with electron-deficient dienophiles (normal-type Diels-Alder reaction), and the anil le underwent Diels-Alder reaction with both of them. Although it was reported that introduction of an electron-withdrawing group into the 2position of compounds $\mathbf{1 b}, \mathbf{c}, \mathbf{e}$ causes a remarkable rise in their reactivity to above that of the parent 1 -azadienes, ${ }^{2 d . e .3 b . d .5 a . c}$ introduction of the electron-withdrawing group into the 3position of the dienes has rarely been investigated. ${ }^{3 d}$ Moreover, to our knowledge, no conscious effort has been made to study the stability of the imine moiety of 1 -azabutadiene. We recently reported another type of 1 -azabuta-1,3-diene, benzylidene-(cyano)methyl-1,3-benzoxa/thiazoles (2 and 3), in which the imine moieties are stabilized by their constituting heteroaromatic rings. ${ }^{6}$ It was also reported that dienes 2 and 3 have adequate reactivity arising from the electron-withdrawing cyano group, and undergo Diels-Alder reaction with both electron-rich and electron-deficient dienophiles to give the corresponding cycloadducts. ${ }^{6}$ Furthermore, the cycloaddition is efficiently applicable to the intramolecular system. ${ }^{6}$ We present here a full account of this work.

Results and discussion

Intermolecular Diels-Alder reaction of benzylidene(cyano)-methyl-1,3-benzothiazoles 2 and benzylidene(cyano)methyl-1,3benzoxazoles 3
 As shown in Scheme 1, the starting dienes 2a-e and 3a-e, stable crystalline materials, were readily prepared by condensation of (1,3-benzothiazol-2-yl)acetonitrile 4 and (1,3-benzoxazol-2-

Table 1 Diels-Alder reaction of the dienes 2,3 with N-methylmaleimide 7^{a}

Run	Diene	$\begin{aligned} & \text { Time } \\ & (t / \mathrm{h}) \end{aligned}$	Product (Y)	Yield $(\%)$	$\begin{aligned} & J_{\mathrm{AB}} \\ & (\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & J_{\mathbf{B C}} \\ & (\mathrm{Hz}) \end{aligned}$
1	2a	72	10a (OMe)	33	7.3	7.9
2	2b	30	10b (Me)	32	6.9	8.3
3	2c	66	10c (H)	52	6.9	7.9
4	2d	18	$10 \mathrm{~d}(\mathrm{Cl})$	86	7.6	7.9
5	2e	60	$10 \mathrm{e}\left(\mathrm{NO}_{2}\right)$	85	7.6	7.9
6	3a	66	11a (OMe)	14	6.9	8.3
7	3b	42	11 b (Me)	21	7.0	8.3
8	3c	48	11c (H)	18	7.8	7.8
9	3d	42	11d (Cl)	25	7.2	7.9
10	3 e	12	11e (NO_{2})	71	7.3	8.6

[^0]yl)acetonitrile 5 with benzaldehydes 6 bearing various groups at the para position. ${ }^{7}$ With the starting dienes 2 and 3 in hand, dienophiles 7-9 possessing three typical electronic requirements were selected for the reactions with dienes 2 and 3. In other words, N -methylmaleimide 7, anethole 8, and 3,4-dihydro- 2 H pyran 9 can be classified into olefins having electronwithdrawing conjugate-type Z , simple conjugate-type C , and electron-donating heteroatom-type X substituents, respectively. ${ }^{8}$
First, Diels-Alder reaction of the dienes 2a-e and 3a-e with imide 7 was examined (Table 1). Thus, mixtures of the dienes ($2 \mathrm{a}-\mathrm{e}$ and $\mathbf{3 a - e}, 1 \mathrm{~mol}$ equiv.) and imide 7 (7.5 mol equiv.) were heated at $120^{\circ} \mathrm{C}$ to give the corresponding endo-cycloadducts $10 \mathrm{a}-\mathrm{e}$ and $11 \mathrm{a}-\mathrm{e}$. The endo-selectivities were probably due to secondary orbital interactions. Table 1 shows that

Scheme 1 Reagents: i, 6, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH} ; \mathrm{ii}, 7-9$
benzothiazole-derived dienes $\mathbf{2 a - e}$ give higher yields than those (3) from benzoxazole. Surprisingly, compounds $2 d$, e and 3 e having an electron-deficient group (Cl or NO_{2}) tend to be more

Fig. 1 NOEs of compound 10 c

Table 2 Diels-Alder reaction of the dienes 2,3 with anethole $8{ }^{a}$

Run	Diene	$\begin{aligned} & \text { Time } \\ & (t / \mathrm{h}) \end{aligned}$	Product (Y)	Yield (\%)	$\begin{aligned} & J_{\mathrm{AB}} \\ & (\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & J_{\mathrm{BC}} \\ & (\mathrm{~Hz}) \end{aligned}$
1	2a	36	12a (OMe)	42	5.2	5.2
2	2b	12	12b (Me)	57	5.8	5.5
3	2c	24	$12 \mathrm{c}(\mathrm{H})$	77	4.9	4.9
4	2d	6	12d (Cl)	76	4.0	4.0
5	2e	12	12e (NO_{2})	75	2.7	2.9
6	3a	78	13a (OMe)	45	10.3	10.0
7	3b	72	13b (Me)	63	10.3	10.3
8	3c	18	13c (H)	69	10.1	10.1
9	3 d	12	13d (Cl)	79	10.0	10.0
10	3 e	12	$13 \mathrm{e}\left(\mathrm{NO}_{2}\right)$	63	9.9	9.6

${ }^{a}$ All the reactions were carried out using 2 mol equiv. of dienophile 8 at $120^{\circ} \mathrm{C}$.
reactive with highly electron-deficient dienophile 7 than are dienes 2a and 3a bearing an electron-donating group (OMe) (runs $1,6 \mathrm{vs}$. runs $4,5,10$). \dagger The stereochemistry of compounds 10 and 11 was assigned based on the coupling constants (J_{AB} and J_{BC}) in their ${ }^{1} \mathrm{H}$ NMR spectra, and confirmed by nuclear overhauser effect (NOE) experiments of compound $\mathbf{1 0 c}$ (Fig. 1).

Next, Diels-Alder reactions of dienes 2 and 3 with anethole 8 were investigated. Heating of the dienes (2 and 3, 1 mol equiv.) with anethole 8 (2 mol equiv.) at $120^{\circ} \mathrm{C}$ caused a Diels-Alder reaction to occur, and gave the corresponding cycloadducts 12 and 13, and the results are summarized in Table 2. The regiochemistry of the cycloadducts 12 and 13 was opposite to that of the product from the related reaction of 1 -acetyl-2-cyano-4-phenyl-1-azabuta-1,3-diene with β-methylstyrene, ${ }^{2 e}$ and was similar to that of the product from the related reaction of 4-ethoxycarbonyl-1-phenylsulfonyl-1-aza-buta-1,3-diene with diene 3b. ${ }^{3 d}$ In the ${ }^{1} \mathrm{H}$ NMR spectra, the coupling constants (J_{AB} and J_{BC}) of products 13a-e were observed in the range $9.9-10.3 \mathrm{~Hz}$ and $9.6-10.3 \mathrm{~Hz}$, respectively, which indicated that their H_{A}, H_{B} and H_{C} have 1,2-axialaxial relationships. These facts clearly show that cycloadducts 13a-e have endo-stereochemistry. However, it was difficult to establish the endo- or exo-stereochemistry of cycloadducts 12ae from their ${ }^{1} \mathrm{H}$ NMR spectra; since the spectra showed smaller $J_{A B}$-values ($2.7-5.2 \mathrm{~Hz}$), there is a tendency for adducts $\mathbf{1 2}$ having a more powerful electron-withdrawing group to exhibit a smaller coupling constant. To solve this stereochemical ambiguity, single-crystal structure analyses of compound 12e having the smallest coupling constant, and of compound 13a having the largest one, were performed. The crystal structures revealed that both adducts have endo-stereochemistry and the same chair-like conformations (Figs. 2, 3). The stereochemistries of the other products 12a-d were tentatively assigned as endo by comparison of their ${ }^{1} \mathrm{H}$ NMR spectra with
\dagger This curious tendency was also observed in Diels-Alder reactions of methyl acrylate with other 1-azabuta-1,3-dienes. ${ }^{5 c}$

Fig. 2 X-ray molecular structure of compound 12e

Fig. 3 X-ray molecular structure of compound 13a
those of compound 12 e . The endo-selectivities of the reactions of dienes $\mathbf{2}$ and $\mathbf{3}$ with anethole $\mathbf{8}$ may also arise from secondary orbital interactions.

Normally, coupling constants of 1,2-diaxial protons are observed in the range $8-10 \mathrm{~Hz}$ in their ${ }^{1} \mathrm{H}$ NMR spectra. In our cases, both J_{AB} and J_{BC} of adducts 12 appear in the range 2.75.2 Hz , although the protons occupy axial positions in the crystalline state. One possibility is that adducts $\mathbf{1 2}$ might have a different conformation in solution from that in the crystalline state. Indeed, NOE experiments on compound 12 e showed NOE enhancements between H_{A} and H_{B}, and between H_{C} and H_{B} as illustrated in Fig. 4. Since 1,2-diaxial protons should have no NOE enhancements, the above NOEs may support the assumption concerning the conformational differences of adducts 12. In sharp contrast, the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 13a showed NOEs between H_{A} and H_{C}, which indicate that H_{A} and H_{C} have a 1,3-diaxial relationship.

Finally, reactions of dienes 2 and 3 with dihydropyran 9 were examined; they require higher temperatures than those with dienophiles 7 or 8 . Thus, the dienes (2 and $3,1 \mathrm{~mol}$ equiv.) were heated in an excess of compound 9 at $190^{\circ} \mathrm{C}$ in a sealed tube to give cycloadducts 14 and 15 as mixtures of diastereoisomers,
(a)

(b)

Fig. 4 NOEs of (a) compound 12e and (b) compound 13a

Fig. 5 X-ray molecular structure of compound endo-14b
respectively (Table 3). In their ${ }^{1} \mathrm{H}$ NMR spectra, the products having smaller coupling constants (J_{AB}) were assigned as endoproducts. These stereochemical assignments were confirmed by crystal-structure determination of product endo-14b (Fig. 5).

Intramolecular Diels-Alder reaction of 2-(2-allyloxybenzyl-idene)(cyano)methyl-1,3-benzazoles

With the results of the intermolecular Diels-Alder reactions of dienes 2 with 3 in hand, we turned our attention to the application of this reaction to an intramolecular version. As shown in Scheme 2, substrates for the intramolecular cycloaddition were prepared. Condensation of heterocycles 4 and 5 with salicylaldehyde followed by alkylation of resulting diene alcohols 16 and 17 with allyl bromides gave the substrates 18a, c, d and 19a, c, d having olefin moieties as intramolecular dienophiles. During the preparation of compound 19d, the

Table 3 Diels-Alder reaction of the dienes 2,3 with 3,4-dihydro-2H-pyran 9^{a}

Run	Diene	Time (t / h)	Product (Y)	Yield (\%)	endo:exo	$\begin{aligned} & \text { endo-14, } 15 \\ & J_{\mathrm{AB}}(\mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \text { exo-14, } 15 \\ & J_{A B}(\mathrm{~Hz}) \end{aligned}$
1	2a	24	14a (OMe)	34	1:1	5.6	11.2
2	2b	36	14 b (Me)	49	1:1.5	5.1	11.2
3	2c	12	14c (H)	39	1.3:1	5.5	11.0
4	2 d	24	14d (Cl)	41	1:1.2	5.6	11.0
5	2e	6	14e (NO_{2})	46	1:1.6	5.8	11.2
6	3a	84	15a (OMe)	30	2:1	4.6	6.9
7	3b	66	15b (Me)	49	6:1	4.6	6.6
8	3c	42	15c (H)	56	1.3:1	4.6	6.6
9	3d	30	15d (Cl)	31	4.2:1	5.9	6.9
10	3 e	18	$15 \mathrm{e}\left(\mathrm{NO}_{2}\right)$	30	1:2	4.9	6.6

${ }^{a}$ All the reactions were carried out at $190^{\circ} \mathrm{C}$ using dienophile 9 as the solvent in a sealed tube.

Scheme 2 Reagents and conditions: i, salicylaldehyde, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}, 16$ (97%), 17 (94%); ii, allyl bromide for 18a and 19a, (E)-but-2-enyl bromide for 18c and 19c or cinnamyl bromide for 18d and 19d, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux; 18a (62%), 18c (59%), 18d (46%), 19a (60%), 19c (46%), 19d (35%); iii, 4 or 5, $\mathrm{Et}_{3} \mathrm{~N}$, EtOH; 18b (66%), 19b (68%)
intramolecular cycloadduct 21d was also produced, in 21% yield, due to the high reactivity of substrate 19d. Substrates 18b and 19b with acetylene moieties as dienophiles were prepared by condensation of 2-propargyloxybenzaldehyde with heterocycles 4 and 5.

With eight types of substrates in hand, the intramolecular Diels-Alder reaction was next examined in refluxing odichlorobenzene (Table 4). Heating of substrates 18a and 19a bearing ethylene moieties gave cis-fused cycloadducts 20a and 21a via endo-transition state $\mathbf{A} \ddagger$ in 19% and 21% yield, respectively, accompanied by coumarins 22 and 23 as byproducts arising from Claisen rearrangement followed by lactonization (runs 1,5) (Fig. 6, Scheme 3). The stereochemistry of the products 20a and 21a was tentatively assigned by the coupling constants (J_{AB}) in their ${ }^{1} \mathrm{H}$ NMR spectra, and confirmed by NOE experiments on compound 20a (Fig. 7). Reactivities of acetylenes 18b and 19b were extremely low, and
\ddagger The term exo refers to the orientation of the dienophile-to-arylconnecting side-chain rather than to the orientation of the phenyl or methyl group. ${ }^{9}$

A

B

Fig. 6

21d
Fig. 7 NOEs for compounds 20a, 21d
none of the cycloadducts was obtained (runs 2,6). However, successful intramolecular cycloadditions were achieved by employing substrates 18c, d and 19c, d having electron-rich olefin moieties. Thus, intramolecular cycloaddition of the substrates took place smoothly to afford adducts $20 \mathrm{c}, \mathrm{d}$ and 21 c , d in trans-fused forms exclusively, arising from exo-transition states B, \ddagger in good to excellent yields (runs 3,4,7,8) (Fig. 6). The

Table 4 Intramolecular cycloaddition of compounds 18a-d and 19a-d

Run	Starting substrate	Reaction time	Cycloadduct	Yield (\%)	$J_{\text {AB }} / \mathrm{Hz}$
1	18a X $=\mathrm{S}, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	3 h	20a	19	5.0
2	18b $\mathrm{X}=\mathrm{S}, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH} \equiv \mathrm{CH}$	50 h			
3	18 c X $=\mathrm{S}, \mathrm{R}^{1}=(E)-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHMe}$	40 min	20c $\mathrm{R}^{2}=\mathrm{Me}$	62	11.2
4	$18 \mathrm{~d} \mathrm{X}=\mathrm{S}, \mathrm{R}^{1}=(E)-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}$	20 min	20d $\mathrm{R}^{2}=\mathrm{Ph}$	90	10.9
5	19a X $=\mathrm{O}, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	3 h	21a	21	4.6
6	19b $\mathrm{X}=\mathrm{O}, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH} \equiv \mathrm{CH}$	50 h			
7	$19 \mathrm{c} \mathrm{X}=\mathrm{O}, \mathrm{R}^{1}=(E)-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHMe}$	30 min	21c $\mathrm{R}^{2}=\mathrm{Me}$	72	10.9
8	19d $\mathrm{X}=\mathrm{O}, \mathrm{R}^{1}=(E)-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHPh}$	30 min	21d $\mathrm{R}^{2}=\mathrm{Ph}$	94	10.9

18a $\mathrm{X}=\mathrm{S}$
19a $X=0$

Scheme 3
stereostructure of the cycloadducts was assigned based on axial-axial coupling constants in their ${ }^{1} \mathrm{H}$ NMR spectra (J_{AB}, J_{BC} both $\left.10-11 \mathrm{~Hz}\right)^{9}$ and on NOE difference experiments of adduct 21d (Fig. 7).

These results deserve some comment concerning the novel ${ }^{\circ}$ aspects of this intramolecular cycloaddition. A substrate having an acetylene moiety exhibits lower reactivity than that carrying an ethylene moiety (runs $1,5 \mathrm{vs}$. runs 2,6). \S This fact seems to be due to the lower highest occupied molecular orbital (HOMO) of the acetylene moiety than that of the ethylene moiety. ${ }^{8 c}$ Moreover, cycloaddition of the congener 24 of 18a did not take place without the electron-withdrawing cyano group, and gave only Claisen rearrangement product 25 (Scheme 4). These results suggest that the present intramolecular cycloaddition may be classified as an inverse-type Diels-Alder reaction. Accordingly, the substrates 18c, d and 19c, d having electron-donating groups (methyl or phenyl) in the olefin moieties possess good reactivity, and the reactions gave higher yields within a shorter reaction time (runs $3,4,7,8$). Although the high exoselectivities of the reactions of compounds $\mathbf{1 8 d}$ and 19 d may arise from secondary orbital interactions, the cause(s) of the
§ In contrast to these facts, it was reported that heating of the 1dcongener of azadienes 18b and 19b causes a normal-type intramolecular Diels-Alder reaction to give corresponding cycloadducts, while that of the 1d-congener of azadienes 18a and 19a did not. ${ }^{4 e}$

24

25
Scheme 4
stereoselectivity of the reactions of substrates $\mathbf{1 8 a}, \mathrm{c}$ and 19 a , c remain(s) unknown.

As stated, we have developed a novel hetero-Diels-Alder reaction of benzylidene(cyano)methylazoles as stable 1-azabuta-1,3-dienes. This methodology may facilitate access to various N -heterocycles of biological interest.

Experimental

General

All mps were determined with a Yanagimoto MP-21 melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded on a Hitachi 270-30, and a Shimadzu FTIR-8100 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured with a JEOLPMX60 ${ }_{\text {SI }}(60 \mathrm{MHz})$, JEOL JNM-EX270 $(270 \mathrm{MHz})$, or a JEOL JNM-EX400 (400 MHz) spectrometer. The chemical shifts are expressed in ppm downfield from tetramethylsilane, using tetramethylsilane ($\delta=0$) and/or residual chloroform ($\delta=$ 7.25) as internal standard. J Values are given in Hz. Mass spectra were taken with a JEOL JMS-DX302 mass spectrometer. Unless otherwise noted, all experiments were
carried out under an atmosphere of dry argon and in anhydrous solvents. For TLC analyses, Merck precoated TLC plates (silica gel 60 F254, 0.25 mm , Art 5715) were used. The known compounds $2 \mathbf{2 a - d}$ and $\mathbf{4}$ were prepared according to reported methods. ${ }^{\text {? }}$

(1,3-Benzoxazol-2-yl)acetonitrile 5

A mixture of 2-aminophenol $(1.30 \mathrm{~g}, 12 \mathrm{mmol})$, malononitrile ($2.40 \mathrm{~g}, 36 \mathrm{mmol}$), and acetic acid ($2 \mathrm{~cm}^{3}$) in EtOH ($30 \mathrm{~cm}^{3}$) was heated at reflux for 24 h . After cooling, the mixture was concentrated under reduced pressure, and the residue was diluted with CHCl_{3}. The mixture was filtered, and the filtrate was washed successively with saturated aq. NaHCO_{3} and water. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated under reduced pressure. The resulting crystalline residue was recrystallized from hexane- $\mathrm{Et}_{2} \mathrm{O}(1: 5)$ to give title compound $5\left(0.540 \mathrm{~g}, 30 \%\right.$) as crystals, $\mathrm{mp} 70-72^{\circ} \mathrm{C}$ (Found: C, 68.2; H, 3.5; $\mathrm{N}, 17.6$. Calc. for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 68.35 ; \mathrm{H}, 3.8 ; \mathrm{N}$, $17.7 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2268(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $4.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.35-7.41(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.54-7.56(1 \mathrm{H}, \mathrm{m}$, ArH), 7.73-7.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 158\left(\mathrm{M}^{+}, 100 \%\right), 130(5)$, 103 (14) and 64 (19).

(E)-2-(1,3-Benzothiazol-2-yl)-3-(4-nitrophenyl)acrylonitrile 2e

 To a stirred solution of compound $4(3.50 \mathrm{~g}, 20 \mathrm{mmol})$ and $4-$ nitrobenzaldehyde $6 \mathrm{e}(3.00 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{EtOH}\left(30 \mathrm{~cm}^{3}\right)$ was added 5 drops of triethylamine at room temp. After 3 h , the yellow crystals which had precipitated out were collected by filtration and washed with EtOH to give title compound $2 \mathbf{2}$ $(3.90 \mathrm{~g}, 71 \%)$. An analytical sample was obtained by recrystallization from EtOH-tetrahydrofuran (THF), mp 178$181^{\circ} \mathrm{C}$ (Found: C, 62.6; H, 2.65; N, 13.8. Calc. for $\left.\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 62.55 ; \mathrm{H}, 2.9 ; \mathrm{N}, 13.7 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2230(\mathrm{CN}) ; \delta_{\mathbf{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.23-8.43(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH},=\mathrm{CH})$; $m / z 307\left(\mathrm{M}^{+}, 71 \%\right), 306$ (100) and $260(55)$.
(E)-2-(1,3-Benzoxazol-2-yl)-3-(4-methoxyphenyl)acrylonitrile

 3aThis compound ($282 \mathrm{mg}, 89 \%$) was prepared from substrates 5 ($158 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $6 \mathrm{a}(204 \mathrm{mg}, 1.5 \mathrm{mmol}$), triethylamine (2 drops), and EtOH ($2 \mathrm{~cm}^{3}$) in the same manner as for the preparation of analogue $2 \mathrm{e}, \mathrm{mp} 175-177^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 73.9; H, 4.1; N, 10.15. Calc. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $73.9 ; \mathrm{H}, 4.4 ; \mathrm{N}, 10.15 \%)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2225(\mathrm{CN}) ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 7.01 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{ArH}$), 7.37 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.56(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.77(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.05(2$ $\mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH})$ and $8.22(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}) ; m / z 276\left(\mathrm{M}^{+}, 52 \%\right)$, 275 (100), 250 (10) and 232 (22).

(E)-2-(1,3-Benzoxazol-2-yl)-3-(p-tolyl)acrylonitrile 3b

This compound ($780 \mathrm{mg}, 76 \%$) was prepared from substrates 5 ($690 \mathrm{mg}, 3.9 \mathrm{mmol}$) and $\mathbf{6 b}(780 \mathrm{mg}, 6.5 \mathrm{mmol}$), triethylamine (5 drops), and $\mathrm{EtOH}\left(14 \mathrm{~cm}^{3}\right)$ in the same manner as for the preparation of analogue $2 \mathrm{e}, \mathrm{mp} 191-193^{\circ} \mathrm{C}$ (from MeOH) (Found: C, 78.3; H, 4.35; N, 10.75. Calc. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}$, $78.45 ; \mathrm{H}, 4.65 ; \mathrm{N}, 10.75 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2225(\mathrm{CN}) ; \delta_{\mathrm{H}}(60$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.21-7.93(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.20(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}) ; m / z 259\left(\mathrm{M}^{+}, 100 \%\right), 234$ (7) and 216 (3).

(E)-2-(1,3-Benzoxazol-2-yl)-3-phenylacrylonitrile 3c

This compound ($329 \mathrm{mg}, 87 \%$) was prepared from substrates 5 ($237 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathbf{6 c}(159 \mathrm{mg}, 1.5 \mathrm{mmol}$), triethylamine (3 drops), and EtOH ($3 \mathrm{~cm}^{3}$) in the same manner as for the preparation of analogue $2 \mathrm{e}, \mathrm{mp} 138-140^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 78.0; H, 3.95; N, 11.4. Calc. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$: C, $78.0 ; \mathrm{H}, 4.1 ; \mathrm{N}, 11.4 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2232(\mathrm{CN}) ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.26-8.16(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.30(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$; $m / z 245\left(\mathrm{M}^{+}, 100 \%\right), 220(6)$ and $140(3)$.
(E)-2-(1,3-Benzoxazol-2-yl)-3-(4-chlorophenyl)acrylonitrile 3d This compound ($471 \mathrm{mg}, 78 \%$) was prepared from substrates 5 ($340 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathbf{6 d}(450 \mathrm{mg}, 3.2 \mathrm{mmol}$), triethylamine (7 drops), and $\mathrm{EtOH}\left(7 \mathrm{~cm}^{3}\right.$) in the same manner as for the preparation of analogue $2 \mathrm{e}, \mathrm{mp} 149-151^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 68.5; H, 2.9; N, 10.0. Calc. for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}: \mathrm{C}$, $68.5 ; \mathrm{H}, 3.2 ; \mathrm{N}, 10.0 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2223(\mathrm{CN}) ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.07-8.07(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.26(1 \mathrm{H}, \mathrm{s},=\mathrm{CH})$; $m / z 282\left(\mathrm{M}^{+}, 25 \%\right), 281(44), 280\left(\mathrm{M}^{+}, 73\right), 279(100)$ and 254 (5).

(E)-2-(1,3-Benzoxazol-2-yl)-3-(4-nitrophenyl)acrylonitrile 3e

This compound ($1.36 \mathrm{~g}, 90 \%$) was prepared from substrates 5 ($960 \mathrm{mg}, 5.5 \mathrm{mmol}$) and $\mathbf{6 e}(1.36 \mathrm{mg}, 9.0 \mathrm{mmol}$), triethylamine (5 drops), and EtOH ($10 \mathrm{~cm}^{3}$) in the same manner as for the preparation of analogue $2 \mathrm{e}, \mathrm{mp} 218-222^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 65.9; H, 2.9; N, 14.4. Calc. for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 66.0; $\mathrm{H}, 3.1 ; \mathrm{N}, 14.3 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2225(\mathrm{CN}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 7.2-8.8(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH},=\mathrm{CH}) ; m / z 290\left(\mathrm{M}^{+}, 100 \%\right), 244$ (100) and 216 (21).

General procedure for the intermolecular Diels-Alder reaction of compounds 2 and 3 (Tables 1-3)

A mixture of a diene $\mathbf{2}$ or $\mathbf{3}$ and a dienophile $\mathbf{7 , 8} \mathbf{8}$ or $\mathbf{9}(\mathbf{7 , 8} \mathbf{~ m o l}$ equiv.; 8, 2 mol equiv.; 9, as a solvent) was heated. After cooling, the mixture was concentrated under reduced pressure to give the crude product, which was purified by column chromatography on silica gel and/or crystallization. The reaction temperature, the reaction time, and the yield are listed in Tables 2-4.
(3a $R^{*}, 4 R^{*}, 11 \mathrm{a} S^{*}$)-4-(4-Methoxyphenyl)-2-methyl-1,3-dioxo-1,2,3,3a,4,11a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzo-thiazole-5-carbonitrile 10a (Table 1, run 1). This compound (226 mg) was prepared from diene $\mathbf{2 a}(500 \mathrm{mg}, 1.7 \mathrm{mmol}$) and imide 7 $\left(1.52 \mathrm{~g}, 14 \mathrm{mmol}\right.$), mp $250-253^{\circ} \mathrm{C}$ (Found: C, $65.25 ; \mathrm{H}, 4.3$; N, 10.3. Calc. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 65.5 ; \mathrm{H}, 4.25 ; \mathrm{N}, 10.4 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2190(\mathrm{CN})$ and $1723(\mathrm{CO}) ; \delta_{\mathrm{H}}[270 \mathrm{MHz}$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.67(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and 7.9 , NCHCHCHAr), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.20(1 \mathrm{H}, \mathrm{d}, J 7.3$, NCHCHCHPh), $5.64(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{NCHCHCHPh}), 6.81(2 \mathrm{H}$, d, J 8.6, ArH), $6.89(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}), 7.4-7.2(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.74(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}) ; m / z 403\left(\mathrm{M}^{+}, 100 \%\right), 388(27), 372$ (12) and 291 (34).
(3a $R^{*}, 4 R^{*}, 11 \mathrm{a} S^{*}$)-2-Methyl-1,3-dioxo-4-(p-tolyl)-1,2,3,3a, 4,11a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzothiazole-
5 -carbonitrile 10b (Table 1, run 2). This compound (237 mg) was prepared from diene $\mathbf{2 b}(500 \mathrm{mg}, 1.9 \mathrm{mmol})$ and imide $7(1.69 \mathrm{~g}$, 14 mmol), $\mathrm{mp} 250-253^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: C, $68.2 ; \mathrm{H}$, 4.4; $\mathrm{N}, 10.8$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: C, 68.2; $\mathrm{H}, 4.4 ; \mathrm{N}$, $10.85 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2190(\mathrm{CN})$ and $1722(\mathrm{CO}) ; \delta_{\mathrm{H}}[270$ MHz ; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.23$ ($3 \mathrm{H}, \mathrm{s}$, NMe), 3.66 (1 H , dd, $J 6.9$ and 8.3, NCHCHCHAr), $4.20(1 \mathrm{H}, \mathrm{d}, J 6.9$, NCHCHCHPh), 5.47 ($1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{NCHCHCHPh}$), 6.84 (2 H , d, $J 8.3, \mathrm{ArH}$), $7.05(2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 7.1-7.5(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.73(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ; m / z 403\left(\mathrm{M}^{+}, 100 \%\right), 388(27), 372$ (12) and 291 (34).
($3 \mathrm{a} R^{*}, 4 R^{*}, 11 \mathrm{a} S^{*}$)-2-Methyl-1,3-dioxo-4-phenyl-1,2,3,3a, 4,11a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzothiazole5 -carbonitrile 10c (Table 1, run 3). This compound (370 mg) was prepared from diene $2 \mathrm{c}(500 \mathrm{mg}, 1.9 \mathrm{mmol})$ and imide $7(1.70 \mathrm{~g}$, 15 mmol) $\mathrm{mp}>300^{\circ} \mathrm{C}$ (from acetone) (Found: C, $67.45 ; \mathrm{H}$, 3.95; $\mathrm{N}, 11.2$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 67.55 ; \mathrm{H}, 4.05 ; \mathrm{N}$, $11.2 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2192(\mathrm{CN})$ and $1726(\mathrm{CO}) ; \delta_{\mathrm{H}}[270$ MHz ; $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 2.15$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.71 (1 H , dd, J 6.9 and 7.9, NCHCHCHAr), $4.27(1 \mathrm{H}, \mathrm{d}, J 6.9$, NCHCHCHPh, spin saturation at $\delta 3.71$, NOE, 15%), $5.66(1 \mathrm{H}, \mathrm{d}, J 7.9$, NCHCHCHPh , spin saturation at $\delta 3.71$, NOE, 14%), 6.96$7.00(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.18-7.38(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and
7.75 ($1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}) ; m / z 373\left(\mathrm{M}^{+}, 100 \%\right), 296(26), 261$ (34) and 211 (18).
(3aR $\boldsymbol{R}^{*}, 4 R^{*}, 11 a S^{*}$)-4-(4-Chlorophenyl)-2-methyl-1,3-dioxo$1,2,3,3 a, 4,11$ a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzo-thiazole-5-carbonitrile 10d (Table 1, run 4). This compound (588 mg) was prepared from diene $\mathbf{2 d}(500 \mathrm{mg}, 1.7 \mathrm{mmol})$ and imide 7 ($1.50 \mathrm{~g}, 14 \mathrm{mmol}$), mp $291-294^{\circ} \mathrm{C}$ (from acetone) (Found: C, 61.9; $\mathrm{H}, 3.45$; $\mathrm{N}, 10.2$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 61.85 ; \mathrm{H}$, $3.45 ; \mathrm{N}, 10.3 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2192(\mathrm{CN})$ and $1717(\mathrm{CO})$; $\delta_{\mathrm{H}}\left[270 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.70(1 \mathrm{H}$, dd, $J 7.6$ and 7.9, NCHCHCHAr), 4.31 ($1 \mathrm{H}, \mathrm{d}, J 7.6$, NCH$\mathrm{CHCHPh}), 5.67(1 \mathrm{H}, \mathrm{d}, J 7.9$, NCHCHCHPh $), 7.00(2 \mathrm{H}$, $\mathrm{d}, J 8.6, \mathrm{ArH}), 7.1-7.5(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.74(1 \mathrm{H}, \mathrm{d}, J 7.6$, ArH); $m / z 407\left(\mathrm{M}^{+}, 100 \%\right), 372$ (17), 321 (11), 295 (38) and 211 (25).
(3aR*,4R*,11aS*)-2-Methyl-4-(4-nitrophenyl)-1,3-dioxo-1,2,3,3a,4,11a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzo-thiazole-5-carbonitrile 10e (Table 1, run 5). This compound (570 mg) was prepared from diene $\mathbf{2 e}(500 \mathrm{mg}, 1.6 \mathrm{mmol})$ and imide 7 $(1.80 \mathrm{~g}, 16 \mathrm{mmol}), \mathrm{mp} \mathrm{291-294}{ }^{\circ} \mathrm{C}$ (from acetone) (Found: C, 60.25; H, 3.2; N, 13.2. Calc. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 60.3 ; \mathrm{H}, 3.35$; $\mathrm{N}, 13.4 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2194(\mathrm{CN})$ and $1727(\mathrm{CO}) ; \delta_{\mathrm{H}}[270$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.78(1 \mathrm{H}$, dd, $J 7.6$ and 7.9 , NCHCHCHPh), $4.54(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NCHCHCHPh}), 5.73(1 \mathrm{H}$, $J 7.9, \mathrm{NCHCHCHPh}), 7.2-7.4$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.78$ ($1 \mathrm{H}, \mathrm{d}, J$ 7.9, ArH) and $8.14(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}) ; m / z 418\left(\mathrm{M}^{+}, 100 \%\right)$, 371 (29) and 296 (29).
(3a $\left.R^{*}, 4 R^{*}, 11 \mathrm{a} S^{*}\right)$-4-(4-Methoxyphenyl)-2-methyl-1,3-dioxo-1,2,3,3a,4,11a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido [2,1-b]benz-oxazole-5-carbonitrile 11a (Table 1, run 6). This compound $(78 \mathrm{mg})$ was prepared from diene $3 \mathrm{a}(400 \mathrm{mg}, 1.45 \mathrm{mmol})$ and imide $7\left(1.45 \mathrm{~g}, 13 \mathrm{mmol}\right.$), $\mathrm{mp} \mathrm{202-205}{ }^{\circ} \mathrm{C}$ (acetone) (Found: C , 68.0; $\mathrm{H}, 4.25 ; \mathrm{N}, 10.7$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 68.2; H, 4.4; $\mathrm{N}, 10.85 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2198(\mathrm{CN})$ and 1723 (CO); $\delta_{\mathrm{H}}\left[270 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.60(1 \mathrm{H}, \mathrm{dd}, J$ 6.9 and 8.3 , NCHCHCHAr), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.22 ($1 \mathrm{H}, \mathrm{d}, J$ 6.9, NCHCHCHPh), 5.47 (1 H, d, J8.3, NCHCHCHPh), 6.76 ($2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}$), 6.91 ($2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}$), $7.1-7.4$ (3 H, m, $\mathrm{ArH})$ and $7.47(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}) ; m / z 387\left(\mathrm{M}^{+}, 100 \%\right), 372$ (46), 356 (12) and 275 (63).
(3aR*,4R*,11aS*)-2-Methyl-1,3-dioxo-4-(p-tolyl)-1,2,3,3a, 4,11a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzoxazole-5carbonitrile 11b (Table 1, run 7). This compound (120 mg) was prepared from diene $3 \mathrm{~b}(400 \mathrm{mg}, 1.5 \mathrm{mmol})$ and imide $7(1.37 \mathrm{~g}$, 12 mmol), mp $273-276{ }^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 71.1; H, 4.4; $\mathrm{N}, 11.3$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$: $\mathrm{C}, 71.15 ; \mathrm{H}, 4.6 ; \mathrm{N}$, $10.85 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2190(\mathrm{CN})$ and $1723(\mathrm{CO}) ; \delta_{\mathrm{H}}[400$ MHz ($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.21$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.23 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.64 (1 H , dd, J 7.0 and 8.3 , NCHCHCHAr), $4.27(1 \mathrm{H}, \mathrm{d}, J 7.0$, NCHCHCHAr), 5.51 ($1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{NCHCHCHAr}), 6.89(2 \mathrm{H}$, d, J 8.2, ArH), 7.03 (2 H, d, J8.2, ArH), 7.1-7.4 (3 H, m, ArH) and $7.54(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ; m / z 371\left(\mathrm{M}^{+}, 100 \%\right), 356(60), 280$ (14) and 259 (71).
(3a $R^{*}, 4 R^{*}, 11 \mathrm{a} S^{*}$)-2-Methyl-1,3-dioxo-4-phenyl-1,2,3,3a, 4,11a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido [2,1-b]benzoxazole-5carbonitrile 11c (Table 1, run 8). This compound (78 mg) was prepared from diene $3 \mathrm{c}(300 \mathrm{mg}, 1.2 \mathrm{mmol})$ and imide $7(1.08 \mathrm{~g}$, 10 mmol), $\mathrm{mp} \mathrm{282-285}{ }^{\circ} \mathrm{C}$ (from acetone) (Found: C, 70.45; H, 4.15; N, 11.7. Calc. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 70.6 ; \mathrm{H}, 4.2 ; \mathrm{N}$, $11.75 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2196(\mathrm{CN})$ and $1725(\mathrm{CO}) ; \delta_{\mathrm{H}}[400$ $\left.\mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.75(1 \mathrm{H}, \mathrm{t}, J 7.8$, NCHCHCHAr), 4.41 ($1 \mathrm{H}, \mathrm{d}, J 7.8$, NCHCHCHAr), 5.61 (1 H, d, J7.8, NCHCHCHAr), 7.05-7.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.25-7.45 (6 $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.63(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}) ; m / z 357\left(\mathrm{M}^{+}, 100 \%\right)$, 300 (6), 280 (17), 245 (63) and 195 (19).
(3a $\left.R^{*}, 4 R^{*}, 11 \mathrm{a} S^{*}\right)$-4-(4-Chlorophenyl)-2-methyl-1,3-dioxo-1,2,3,3a,4,11a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido [2,1-b]benz-oxazole-5-carbonitrile 11d (Table 1, run 9). This compound (139
mg) was prepared from diene $3 \mathrm{~d}(400 \mathrm{mg}, 1.4 \mathrm{mmol})$ and imide 7 ($1.27 \mathrm{~g}, 11 \mathrm{mmol}$), mp 274-277 ${ }^{\circ} \mathrm{C}$ (Found: C, 64.3; H, 3.45; N, 10.6. Calc. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{O}_{3}$: C, $64.4 ; \mathrm{H}, 3.6 ; \mathrm{N}, 10.7 \%$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2190(\mathrm{CN}), 1723(\mathrm{CO})$ and $1674 ; \delta_{\mathrm{H}}[270$ MHz ; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.28(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.67(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and 7.9, NCHCHCHAr), 4.37 ($1 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{NCHCHCHAr}), 5.52$ (1 H, d, J7.9, NCHCHCHAr), 7.05 ($2 \mathrm{H}, \mathrm{d}, J 8.6$, ArH), 7.2-7.4 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.51(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ; m / z 393\left(\mathrm{M}^{+}, 37 \%\right.$), 392 (42), 391 ($\mathrm{M}^{+}, 100 \%$), 356 (34), 279 (65) and 195 (23).
(3a $R^{*}, 4 R^{*}, 11 \mathrm{a} S^{*}$)-2-Methyl-4-(4-nitrophenyl)-1,3-dioxo$1,2,3,3 \mathrm{a}, 4,11$ a-hexahydropyrrolo $\left[3^{\prime}, 4^{\prime}: 5,6\right]$ pyrido [2,1-b]benz-oxazole-5-carbonitrile 11 e (Table 1, run 10). This compound (491 mg) was prepared from diene $3 \mathrm{e}(500 \mathrm{mg}, 1.7 \mathrm{mmol})$ and imide 7 $\left(1.53 \mathrm{~g}, 14 \mathrm{mmol}\right.$), mp $288-290^{\circ} \mathrm{C}$ (from aq. MeOH) (Found: $\mathrm{M}^{+}, 404.0958 . \mathrm{C}_{21} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $\mathrm{M}, 402.0964$); $v_{\text {max }}(\mathrm{CH}-$ $\left.\mathrm{Cl}_{3}\right) / \mathrm{cm}^{-1} 2202(\mathrm{CN})$ and $1727(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.60(1 \mathrm{H}$, dd, $J 7.3$ and 8.6 , $\mathrm{NCHCHCHAr)}$, 4.38 ($1 \mathrm{H}, \mathrm{d}, J 7.3$, NCHCHCHAr), $4.87(1 \mathrm{H}, \mathrm{d}, J 8.6$, $\mathrm{NCHCHCHAr}), 7.1-7.4(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.05(2 \mathrm{H}, \mathrm{d}, J 8.6$, ArH); $m / z 402\left(\mathrm{M}^{+}, 100 \%\right), 355$ (60), 290 (35) and 280 (25).
($1 R^{*}, 2 R^{*}, 3 S^{*}$)-1,3-Bis-(4-methoxyphenyl)-2-methyl-2,3-di-hydro-1 H-pyrido [2,1-b]benzothiazole-4-carbonitrile 12a (Table 2, run 1). This compound (949 mg) was prepared from diene $\mathbf{2 a}$ $(1.00 \mathrm{~g}, 3.4 \mathrm{mmol})$ and anethole $8(1.00 \mathrm{~g}, 6.75 \mathrm{mmol})$, mp $209-211^{\circ} \mathrm{C}$ (from hexane- CHCl_{3}) (Found: $\mathrm{C}, 73.5 ; \mathrm{H}, 5.35$; $\mathrm{N}, 6.35$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 73.6 ; \mathrm{H}, 5.5 ; \mathrm{N}, 6.35 \%$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2184(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08(3 \mathrm{H}$, $\mathrm{d}, J 7.0, M e \mathrm{CH}), 2.62(1 \mathrm{H}, \mathrm{tq}, J 5.2$ and $7.0, \mathrm{NCHCHCHAr})$, 3.48 ($1 \mathrm{H}, \mathrm{d}, J 5.2$, NCHCHCHAr), $3.70(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2)$, 4.84 (1 H, d, J 5.2, NCHCHCHAr), 6.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.61 (2 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.79(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 6.95(2 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH})$, $6.99(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.39(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 440\left(\mathrm{M}^{+}\right)$.
($1 R^{*}, 2 R^{*}, 3 S^{*}$)-1-(4-Methoxyphenyl)-2-methyl-3-(p-tolyl)-2,3-dihydro-1H-pyrido[2,1-b]benzothiazole-4-carbonitrile 12b (Table 2, run 2). This compound (870 mg) was prepared from diene $2 \mathrm{~b}(1.02 \mathrm{mg}, 3.6 \mathrm{mmol})$ and anethole $8(1.10 \mathrm{~g}, 6.75$ mmol), mp $211-212^{\circ} \mathrm{C}$ (from hexane- CHCl_{3}) (Found: C , 76.35; $\mathrm{H}, 5.55 ; \mathrm{N}, 6.6$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 76.4 ; \mathrm{H}, 5.65$; $\mathrm{N}, 6.6 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2182(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.06(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{MeCH}), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.61(1 \mathrm{H}, \mathrm{br}$ tq, J 5.7 and 7.0, NCHCHCHAr), $3.49(1 \mathrm{H}, \mathrm{d}, J 5.8$, NCHCHCHAr), $3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.82(1 \mathrm{H}, \mathrm{d}, J 5.8$, NCHCHCHAr), 6.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.60(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH})$, $6.80(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}), 6.85-7.05,(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.37 (1 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 424\left(\mathrm{M}^{+}, 43\right), 275$ (7) and 148 (100).
($\left.1 R^{*}, 2 R^{*}, 3 S^{*}\right)$-1-(4-Methoxyphenyl)-2-methyl-3-phenyl-2,3-dihydro- $1 H$-pyrido[2,1-b]benzothiazole-4-carbonitrile $12 c$ (Table 2, run 3). This compound (1.11 g) was prepared from diene 2c ($920 \mathrm{mg}, 3.5 \mathrm{mmol}$) and anethole $8(1.04 \mathrm{~g}, 7.0 \mathrm{mmol})$, $\mathrm{mp} 216-218^{\circ} \mathrm{C}$ (from benzene) (Found: $\mathrm{C}, 76.0 ; \mathrm{H}, 5.25 ; \mathrm{N}$, 6.8. Calc. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 76.1 ; \mathrm{H}, 5.4 ; \mathrm{N}, 6.8 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2182(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.13(3 \mathrm{H}$, d, $J 7.0, M e \mathrm{CH}$), $2.72(1 \mathrm{H}, \mathrm{tq}, J 4.9$ and $7.0, \mathrm{NCHCHCHAr}$), 3.54 ($1 \mathrm{H}, \mathrm{d}, J 4.9$, NCHCHCHAr), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.87 (1 H, d, J4.9, NCHCHCHAr), 6.39 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.57 ($2 \mathrm{H}, \mathrm{d}, J$ 8.9, ArH), 6.67 ($2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}$), 6.95-7.10 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.39(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 410\left(\mathrm{M}^{+}, 10 \%\right), 261(14)$ and 148 (100).
(1R $\left.R^{*}, 2 R^{*}, 3 S^{*}\right)$-3-(4-Chlorophenyl)-1-(4-methoxyphenyl)-2-methyl-2,3-dihydro-1 H-pyrido [2,1-b]benzothiazole-4-carbonitrile 12d (Table 2, run 4). This compound (2.28 g) was prepared from diene $2 \mathrm{~d}(1.04 \mathrm{~g}, 6.0 \mathrm{mmol})$ and anethole $8(1.68 \mathrm{~g}, 10.9$ mmol), mp 131-134 ${ }^{\circ} \mathrm{C}$ (from hexane- CHCl_{3}) (Found: $\mathrm{C}, 70.4$; $\mathrm{H}, 5.0 ; \mathrm{N}, 6.05$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{OS}: \mathrm{C}, 70.2 ; \mathrm{H}, 4.8 ; \mathrm{N}$, $6.3 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2182(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.17$ ($3 \mathrm{H}, \mathrm{d}, J 7.0, M e \mathrm{CH}$), $2.75(1 \mathrm{H}, \mathrm{tq}, J 4.0$ and 7.0 , NCHCHCHAr), 3.53 (1 H, d, J4.0, NCHCHCHAr), 3.69 (3 H, $\mathrm{s}, \mathrm{OMe}), 4.93$ ($1 \mathrm{H}, \mathrm{d}, J 4.0$, NCHCHCHAr), $6.45(1 \mathrm{H}, \mathrm{m}$,

ArH), 6.55 ($2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}$), 6.67 ($2 \mathrm{H}, \mathrm{d}, J 8.7$, ArH), 6.9-7.19 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.43(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z} 440$ $\left(\mathrm{M}^{+}\right)$.
($1 R^{*}, 2 R^{*}, 3 S^{*}$)-1-(4-Methoxyphenyl)-2-methyl-3-(4-nitro-phenyl)-2,3-dihydro-1 H -pyrido $[2,1-b]$ benzothiazole-4-carbonitrile 12e (Table 2, run 5). This compound (120 mg) was prepared from diene $2 \mathrm{e}(100 \mathrm{mg}, 0.32 \mathrm{mmol}$) and anethole 8 ($100 \mathrm{mg}, 0.64 \mathrm{mmol}$), mp $216-218^{\circ} \mathrm{C}$ (from EtOH) (Found: C, $68.5 ; \mathrm{H}, 4.45 ; \mathrm{N}, 9.2$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, $68.55 ; \mathrm{H}, 4.65$; $\mathrm{N}, 9.2 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2182(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.30(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{MeCH}), 2.93(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}$, spin saturation at $\delta 3.67, \mathrm{NOE}, 5 \%$; spin saturation at $\delta 5.03$, NOE, 5%), $3.60(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.67 ($1 \mathrm{H}, \mathrm{d}, J 2.7$, NCHCHCHAr), 5.03 ($1 \mathrm{H}, \mathrm{d}, J 2.9$, NCHCHCHAr), 6.45 ($2 \mathrm{H}, \mathrm{d}, J 8.8$, ArH), $6.54(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.60(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.11(4 \mathrm{H}, \mathrm{m}$, ArH), 7.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.84 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}$); $m / z 455$ ($\mathrm{M}^{+}, 24 \%$) and 148 (100).
($1 R^{*}, 2 R^{*}, 3 S^{*}$)-1,3-Bis-(4-methoxyphenyl)-2-methyl-2,3-dihydro-1 H-pyrido $[2,1-b]$ benzoxazole-4-carbonitrile 13a (Table 2, run 6). This compound (340 mg) was prepared from diene 3a ($500 \mathrm{~g}, 1.8 \mathrm{mmol}$) and anethole 8 ($496 \mathrm{mg}, 3.6 \mathrm{mmol}$), $\mathrm{mp} 230-$ $231.5^{\circ} \mathrm{C}$ (from EtOH) (Found: C, $76.65 ; \mathrm{H}, 5.6 ; \mathrm{N}, 6.65$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 76.4; $\left.\mathrm{H}, 5.7 ; \mathrm{N}, 6.6 \%\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2190(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.66(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCH})$, 2.12 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}$), 3.48 ($1 \mathrm{H}, \mathrm{d}, J 10.3$, NCHCHCHAr, spin saturation at $\delta 4.50$, NOE, 9%), $3.79(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.50(1 \mathrm{H}, \mathrm{d}, J 10.0$, NCHCHCHAr, spin saturation at $\delta 3.48, \mathrm{NOE}, 6 \%), 5.56(1 \mathrm{H}$, d, J7.9, ArH), $6.74(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{ArH}), 6.85-7.0(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ 7.14 ($1 \mathrm{H}, \mathrm{d}, J 7.8$, ArH) and $7.2-7.3$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 424$ ($\mathrm{M}^{+}, 25 \%$), 275 (12) and 148 (100).
($1 R^{*}, 2 R^{*}, 3 S^{*}$)-1-(4-Methoxyphenyl)-2-methyl-3-(p-tolyl)-2,3-dihydro-1 H -pyrido [2,1-b]benzoxazole-4-carbonitrile 13b (Table 2, run 7). This compound (295 mg) was prepared from diene $\mathbf{3 b}(300 \mathrm{~g}, 1.15 \mathrm{mmol})$ and anethole $8(340 \mathrm{mg}, 2.3 \mathrm{mmol})$, $\mathrm{mp} 221-223^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 79.25 ; \mathrm{H}, 5.8 ; \mathrm{N}$, 6.8. Calc. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 79.4; $\mathrm{H}, 5.9 ; \mathrm{N}, 6.85 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2190(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.66(3 \mathrm{H}$, d, $J 6.6, M e \mathrm{CH}$), $2.14(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 2.32(3 \mathrm{H}, \mathrm{s}$, Me), 3.48 ($1 \mathrm{H}, \mathrm{d}, J$ 10.3, NCHCHCHAr), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.49 ($1 \mathrm{H}, \mathrm{d}, J 10.3$, NCHCHCHAr), $5.55(1 \mathrm{H}, \mathrm{dd}, J 0.7$ and 7.8, ArH), $6.74(1 \mathrm{H}, \mathrm{dt}, J 1.2$ and $8.1, \mathrm{ArH}), 6.89(1 \mathrm{H}, \mathrm{dt}, J 1.2$ and 8.1, ArH), $6.93(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.1-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.24(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}) ; m / z 408\left(\mathrm{M}^{+}, 16 \%\right), 259(11)$ and 148 (100).
($1 R^{*}, 2 R^{*}, 3 S^{*}$)-1-(4-Methoxyphenyl)-2-methyl-3-phenyl-2,3-dihydro-1 H -pyrido $[2,1-b$]benzoxazole-4-carbonitrile 13c (Table 2 , run 8). This compound (1.09 g) was prepared from diene 3 c ($984 \mathrm{mg}, 4.0 \mathrm{mmol}$) and anethole $8(1.19 \mathrm{~g}, 8.0 \mathrm{mmol}), \mathrm{mp} 234$ $236{ }^{\circ} \mathrm{C}$ (from hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: $\mathrm{C}, 79.05 ; \mathrm{H}, 5.5 ; \mathrm{N}, 7.1$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 79.15; H, 5.6; $\mathrm{N}, 7.1 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2192(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.67(3 \mathrm{H}$, d, J6.7, MeCH), $2.18(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.53(1 \mathrm{H}, \mathrm{d}, J$ 10.1, NCHCHCHAr), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.51 ($1 \mathrm{H}, \mathrm{d}, J 10.1$, NCHCHCHAr), 5.56 ($1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}$), $6.75(1 \mathrm{H}, \mathrm{dt}, J 1.2$ and 7.9, ArH), 6.87-6.97 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.15(1 \mathrm{H}, \mathrm{d}, J 7.9$, ArH) and 7.23-7.37 (7 H, m, ArH); m/z 394 ($\mathrm{M}^{+}, 19 \%$), 245 (7) and 148 (100).
($1 R^{*}, 2 R^{*}, 3 S^{*}$)-3-(4-Chlorophenyl)-1-(4-methoxyphenyl)-2-methyl-2,3-dihydro-1 H-pyrido [2,1-b]benzoxazole-4-carbonitrile 13d (Table 2, run 9). This compound (442 mg) was prepared from diene 3 d ($365 \mathrm{~g}, 1.3 \mathrm{mmol}$) and anethole $8(385 \mathrm{mg}, 2.6$ mmol), $\mathrm{mp} 241-243^{\circ} \mathrm{C}$ (from hexane- CHCl_{3}) (Found: $\mathrm{C}, 72.8$; $\mathrm{H}, 4.75 ; \mathrm{N}, 6.5$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2}: \mathrm{C}, 72.8 ; \mathrm{H}, 4.95 ; \mathrm{N}$, $6.55 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2192(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.68 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCH}$), 2.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr)}$, ($1 \mathrm{H}, \mathrm{d}, J 10.0$, NCHCHCHAr), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.52 (1 H, d, J 10.0, NCHCHCHAr), 5.58 ($1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}$), 6.76
$(1 \mathrm{H}, \mathrm{dt}, J 1.0$ and $7.8, \mathrm{ArH}), 6.9-6.95(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.15-7.35 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z $428\left(\mathrm{M}^{+}, 17 \%\right), 279(5)$ and 148 (100).
($1 R^{*}, 2 R^{*}, 3 S^{*}$)-1-(4-Methoxyphenyl)-2-methyl-3-(4-nitro-phenyl)-2,3-dihydro-1 H -pyrido $[2,1-b$]benzoxazole-4-carbonitrile 13e (Table 2, run 10). This compound (220 mg) was prepared from diene $3 \mathrm{e}(200 \mathrm{mg}, 0.69 \mathrm{mmol})$ and anethole 8 ($204 \mathrm{mg}, 1.4 \mathrm{mmol}$) $\mathrm{mp} 251-254^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 72.8; $\mathrm{H}, 4.7$; $\mathrm{N}, 6.5$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2}: \mathrm{C}, 72.8 ; \mathrm{H}, 4.9$; $\mathrm{N}, 6.5 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2200(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.73 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCH}$), 2.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.71$ ($1 \mathrm{H}, \mathrm{d}, J 9.9$, NCHCHCHAr), 3.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.58 ($1 \mathrm{H}, \mathrm{d}$, $J 9.6$, NCHCHCHAr), $5.64(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}), 6.79(1 \mathrm{H}, \mathrm{dt}, J$ 1.0 and 7.6, ArH), 6.9-7.0 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.15-7.3 ($3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.48(2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH})$ and $8.21(2 \mathrm{H}, \mathrm{d}, J 8.9$, ArH); $m / z 439\left(\mathrm{M}^{+}, 7 \%\right), 290(3), 244$ (3) and 148 (100).
($4 \mathrm{a} R^{*}, 5 R^{*}, 12 \mathrm{a} R^{*}$)-5-(4-Methoxyphenyl)-3,4,4a, 12a-tetra-hydro-2H,5H-pyrano $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzothiazole-6-carbonitrile endo-14a and its ($5 S^{*}$)-isomer exo-14a (Table 3, run 1). Compounds endo-14a (109 mg) and exo-14a (110 mg) were prepared from diene 2 a ($500 \mathrm{mg}, 1.7 \mathrm{mmol}$) and dihydropyran 9 ($5 \mathrm{~cm}^{3}$, 55 mmol). Compound endo-14a: mp $223-225^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 70.1, H, 5.25; N, 7.4. Calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 70.2 ; \mathrm{H}, 5.35 ; \mathrm{N}, 7.45 \%$); $v_{\max }{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2186(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, CH_{2}), $1.24\left(1 \mathrm{H}, \mathrm{brs}, \mathrm{CH}_{2}\right), 1.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.37(1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), $3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.86$ ($1 \mathrm{H}, \mathrm{d}, J 5.6$, NCHCHCHAr), $5.54(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 4.6$, NCHCHCHAr), 6.84 ($2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}$), $7.0-7.2$ ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.2-7.3(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.34(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ; m / z$ 376 (M ${ }^{+}, 47 \%$), 292 (100), 291 (98), 277 (6), 266 (21) and 248 (13). Compound exo-14a: mp $277^{\circ} \mathrm{C}$ (from acetone) (Found: C, $70.2 ; \mathrm{H}, 5.2 ; \mathrm{N}, 7.45 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2194(\mathrm{CN}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45\left(1 \mathrm{H}, \mathrm{brd}, J 13.7, \mathrm{CH}_{2}\right), 1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.09(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.76(1 \mathrm{H}, \mathrm{dt}$, $J 2.7$ and $11.7, \mathrm{OCHH}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.88(1 \mathrm{H}, \mathrm{d}, J 11.2$, NCHCHCHAr), 4.11 ($1 \mathrm{H}, \mathrm{brd}, J 11.7, \mathrm{OCH} H$), $5.27(1 \mathrm{H}, \mathrm{d}, J$ 2.7, NCHCHCHAr), 6.90 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}$), 6.99 ($1 \mathrm{H}, \mathrm{d}, J$ 8.1, ArH), 7.06 ($1 \mathrm{H}, \mathrm{dt}, J 0.7$ and $7.6, \mathrm{ArH}$), 7.17 ($2 \mathrm{H}, \mathrm{d}, J 8.8$, $\mathrm{ArH}), 7.23(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH})$ and $7.35(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH})$; $m / z 376\left(\mathrm{M}^{+}, 52 \%\right), 292$ (93), 291 (100), 277 (7), 266 (20) and 248 (10).
($4 \mathrm{a} R^{*}, 5 R^{*}, 12 \mathrm{a} R^{*}$)-5-(p-Tolyl)-3,4,4a, 12a-tetrahydro-2H,5Hpyrano $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzothiazole-6-carbonitrile endo-14b and its (5S*)-isomer exo-14b (Table 3, run 2). Compounds endo-14b (130 mg) and exo-14b (189 mg) were prepared from diene $\mathbf{2 b}$ ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) and dihydropyran 9 ($5 \mathrm{~cm}^{3}, 55 \mathrm{mmol}$). Compound endo-14b: $\mathrm{mp} 228-231^{\circ} \mathrm{C}$ (from acetone) (Found: C, $73.35 ; \mathbf{H}, 5.5 ; \mathrm{N}, 7.8$. Calc. for $\left.\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 73.3 ; \mathrm{H}, 5.6 ; \mathrm{N}, 7.8 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2186 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.07\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right), 1.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, CH_{2}), $1.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.28(1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), 2.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.51 (1 H, ddd, J3.7, 7.6 and 11.1, OCHH), $3.63(1 \mathrm{H}$, ddd, $J 3.9,6.1$ and $11.1, \mathrm{OCH} H), 3.91$ ($1 \mathrm{H}, \mathrm{d}, J$ 5.1, NCHCHCHAr), 5.57 ($1 \mathrm{H}, \mathrm{d}, J$ 3.2, NCHCHCHAr) and 7.05-7.40 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z 360 (M^{+}, 38%), 275 (100) and 261 (7). Compound exo-14b: mp 267$271{ }^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 73.35; H, 5.45; N, 7.75\%); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2186(\mathrm{CN}) ; \delta_{\mathbf{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.44(1 \mathrm{H}$, br d, $\left.J 13.9, \mathrm{CH}_{2}\right), 1.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.11$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}$), $2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.76(1 \mathrm{H}, \mathrm{dt}, J 2.7$ and $11.5, \mathrm{OCHH}), 3.89(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{NCHCHCHAr}), 4.11(1$ $\mathrm{H}, \mathrm{br} \mathrm{d}, J 11.5, \mathrm{OCH} H), 5.27(1 \mathrm{H}, \mathrm{d}, J 2.7, \mathrm{NCHCHCHAr})$ and 6.9-7.4 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 360\left(\mathrm{M}^{+}, 42 \%\right), 275(100), 261$ (7) and 250 (11).
($4 \mathrm{a} \mathrm{R}^{*}, 5 \mathrm{R}^{*}, 12 \mathrm{a} R^{*}$)-5-Phenyl-3,4,4a,12a-tetrahydro-2H,5Hpyrano $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzothiazole-6-carbonitrile endo-14c and its (5S*)-isomer exo-14c (Table 3, run 3).

Compounds endo-14c (145 mg) and exo-14c (115 mg) were prepared from diene $2 \mathrm{c}(500 \mathrm{mg}, 1.9 \mathrm{mmol})$ and dihydropyran $9\left(5 \mathrm{~cm}^{3}, 55 \mathrm{mmol}\right)$. Compound endo-14c: mp $265-267^{\circ} \mathrm{C}$ (from acetone) (Found: C, 72.9; H, 5.1; N, 8.1. Calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 72.8 ; \mathrm{H}, 5.25 ; \mathrm{N}, 8.1 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2200(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.01\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{2}\right), 1.28(1$ H , br s, CH_{2}), $1.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.32(1$ $\mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.53(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 3.63(1 \mathrm{H}, \mathrm{ddd}, J$ 3.7, 6.4 and $11.0, \mathrm{OCH} H$), $3.94(1 \mathrm{H}, \mathrm{d}, J 5.5$, NCHCHCHAr), $5.57(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2.7, \mathrm{NCHCHCHAr}), 7.08(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.15-7.40 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 346$ ($\mathrm{M}^{+}, 33 \%$), 261 (100) and 235 (10). Compound exo-14c: mp $256-259^{\circ} \mathrm{C}$ (from acetone) (Found: C, 72.6; H, 5.1; N, 8.0\%); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2180$ $(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.46\left(1 \mathrm{H}\right.$, br d, $\left.J 13.7, \mathrm{CH}_{2}\right), 1.70$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.13(1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), 3.76 ($1 \mathrm{H}, \mathrm{dt}, J 2.4$ and 11.3, OCHH), 3.93 (1 $\mathrm{H}, \mathrm{d}, J 11.0$, NCHCHCHAr), $4.10(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.3, \mathrm{OCH} H)$, 5.28 ($1 \mathrm{H}, \mathrm{d}, J 2.8, \mathrm{NCHCHCHAr}), 7.01(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}$), $7.07(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArH})$ and $7.20-7.40(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 346$ ($\mathrm{M}^{+}, 36 \%$), 261 (100) and 236 (10).
($4 \mathrm{a} R^{*}, 5 R^{*}, 12 \mathrm{a} R^{*}$)-5-(4-Chlorophenyl)-3,4,4a,12a-tetra-hydro- $2 H, 5 H-$ pyrano $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzothiazole-6carbonitrile endo-14d and its ($5 S^{*}$)-isomer exo-14d (Table 3, run 4). Compounds endo-14d (121 mg) and exo-14d (140 mg) were prepared from diene $\mathbf{2 d}$ ($500 \mathrm{mg}, 1.7 \mathrm{mmol}$) and dihydropyran 9 ($5 \mathrm{~cm}^{3}$, 55 mmol). Compound endo-14d: $\mathrm{mp} 222-225^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: $\mathrm{C}, 66.05 ; \mathrm{H}, 4.3 ; \mathrm{N}, 7.35$. Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{OS}: \mathrm{C}, 66.2 ; \mathrm{H}, 4.5 ; \mathrm{N}, 7.35 \%\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 2184; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.96\left(1 \mathrm{H}, \mathrm{brs}, \mathrm{CH}_{2}\right), 1.28(1 \mathrm{H}$, br s, CH_{2}), 1.6-1.9 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr})$, 3.5-3.6 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), $3.88(1 \mathrm{H}, \mathrm{d}, J 5.6, \mathrm{NCHCHCHAr})$, $5.52(1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{NCHCHCHAr}), 7.05-7.3(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.36(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ; m / z 382\left(\mathrm{M}^{+}, 21 \%\right), 380\left(\mathrm{M}^{+}, 51\right)$ and 295 (100). Compound exo-14d: mp $>300^{\circ} \mathrm{C}$ (from THF) (Found: C, 66.1; H, 4.3; N, 7.35%); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2188$ $(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.48\left(1 \mathrm{H}, \mathrm{brd}, J 13.9, \mathrm{CH}_{2}\right), 1.65-$ $1.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.85-2.0\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.05-2.15(1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), 3.77 ($1 \mathrm{H}, \mathrm{dt}, J 2.4$ and 11.5, OCHH), 3.93 (1 $\mathrm{H}, \mathrm{d}, J 11.0$, NCHCHCHAr), 4.13 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 11.5, \mathrm{OCH} H$), 5.28 ($1 \mathrm{H}, \mathrm{d}, J 2.7, \mathrm{NCHCHCHAr}), 7.00(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}$), $7.08(1 \mathrm{H}, \mathrm{dt}, J 1.0$ and $7.8, \mathrm{ArH}), 7.15-7.3(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.3-7.4 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z $382\left(\mathrm{M}^{+}, 20 \%\right), 380\left(\mathrm{M}^{+}, 42\right)$ and 295 (100).
(4a $\left.R^{*}, 5 R^{*}, 12 a R^{*}\right)-5-(4-N i t r o p h e n y l)-3,4,4 a, 12 a-t e t r a h y d r o-$ $\mathbf{2 H}, 5 \mathrm{H}$-pyrano $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzothiazole-6-carbonitrile endo-14e and its ($5 S^{*}$)-isomer exo-14e (Table 3, run 5). Compounds endo-14e (180 mg) and exo-14e (115 mg) were prepared from diene 2 e ($500 \mathrm{mg}, 1.9 \mathrm{mmol}$) and dihydropyran 9 ($5 \mathrm{~cm}^{3}$, 55 mmol). Compound endo-14e: $\mathrm{mp} 259-262{ }^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 64.45; H, 4.2; N, 10.7. Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 64.45 ; \mathrm{H}, 4.4 ; \mathrm{N}, 10.7 \%\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2184 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{2}\right), 1.27(1 \mathrm{H}$, br s, $\left.\mathrm{CH}_{2}\right), 1.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.43(1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), 3.56-3.7 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), $4.02(1 \mathrm{H}, \mathrm{d}, J 5.8$, NCHCHCHAr), 5.53 ($1 \mathrm{H}, \mathrm{d}, J 2.8, \mathrm{NCHCHCHAr}), 7.13(1 \mathrm{H}$, $\mathrm{dt}, J 0.9$ and $7.6, \mathrm{ArH}$), $7.20(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.9, \mathrm{ArH}), 7.29(1 \mathrm{H}$, td, $J 0.9$ and 7.6, ArH), 7.42 ($1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}$), $7.54(2 \mathrm{H}, \mathrm{d}, J$ 8.9, ArH), 8.19 ($2 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{ArH}$); m/z 391 (M ${ }^{+}, 100 \%$), 306 (40), 260 (19) and 211 (6). Compound exo-14e: $\mathrm{mp}>300^{\circ} \mathrm{C}$ (from acetone) (Found: C, 64.5; H, 4.2; N, 10.7\%); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2186(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.52(1 \mathrm{H}, \mathrm{brd}$, $\left.J 13.9, \mathrm{CH}_{2}\right), 1.63\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 13.9, \mathrm{CH}_{2}\right), 1.79(1 \mathrm{H}, \mathrm{tt}, J 4.4$ and 14.2, CH_{2}), 1.85-2.0 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.15-2.2(1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), 3.80 ($1 \mathrm{H}, \mathrm{dt}, J 2.4$ and $11.5, \mathrm{OCHH}$), 4.11 ($1 \mathrm{H}, \mathrm{d}, J 11.2$, NCHCHCHAr), $4.17(1 \mathrm{H}$, br d, $J 11.5, \mathrm{OCH} H$), 5.31 ($1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{NCHCHCHAr}), 7.02$ ($1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}$), $7.12(1 \mathrm{H}, \mathrm{dt}, J 1.0$ and $7.8, \mathrm{ArH}$), $7.28(1 \mathrm{H}, \mathrm{dt}, J 1.0$ and 7.8 , ArH), $7.40(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.47(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 8.25(2$

H, d, J 8.8, ArH); m/z 391 (${ }^{+}, 78 \%$), 306 (34), 260 (25), 211 (17) and 84 (100).
($4 \mathrm{a} R^{*}, 5 R^{*}, 12 \mathrm{a} R^{*}$)-5-(4-Methoxyphenyl)-3,4,4a,12a-tetra-hydro- $2 \mathrm{H}, 5 \mathrm{H}$-pyrano $\left.3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzoxazole-6carbonitrile endo-15a and its ($5 S^{*}$)-isomer exo-15a (Table 3, run 6). Compounds endo-15a (130 mg) and exo-15a (65 mg) were prepared from diene $3 \mathrm{3a}$ ($500 \mathrm{mg}, 1.8 \mathrm{mmol}$) and dihydropyran $9\left(5 \mathrm{~cm}^{3}, 54 \mathrm{mmol}\right)$. Compound endo-15a: mp 275-277 ${ }^{\circ} \mathrm{C}$ (from acetone) (Found: C, 73.25; H, 5.5; N, 7.75 . Calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 73.3; H, $5.6 ; \mathrm{N}, 7.8 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2192 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.4-1.6(4 \mathrm{H}, \mathrm{m}$, CH_{2}), $2.17(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.45(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH})$, $3.75(1 \mathrm{H}, \mathrm{brd}, J 12.9, \mathrm{OCH} H), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.16(1 \mathrm{H}, \mathrm{d}$, $J 4.6$, NCHCHCHAr), 5.72 ($1 \mathrm{H}, \mathrm{d}, J 3.6$, NCHCHCHAr), 6.9 ($2 \mathrm{H}, \mathrm{brd}, J 6.9, \mathrm{ArH}$), 7.06 ($1 \mathrm{H}, \mathrm{dt}, J 1.3$ and 8.9 , ArH), 7.13 (1 $\mathrm{H}, \mathrm{dt}, J 1.3$ and $7.6, \mathrm{ArH}$) and $7.2-7.3(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 360$ ($\mathrm{M}^{+}, 30 \%$), 275 (100), 250 (7) and 232 (5). Compound exo-15a: $\mathrm{mp} 215-217^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 73.15; H, 5.5; $\mathrm{N}, 7.75 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2194(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $1.0-1.3\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.53(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.1-3.35$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.53(1 \mathrm{H}, \mathrm{d}$, $J 6.9$, NCHCHCHAr), $4.80(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 3.3, \mathrm{NCHCHCHAr})$, 6.6-6.8 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $6.97(2 \mathrm{H}, \mathrm{br}$ d, $J 8.6$, ArH) and 7.45 (2 H , br s, ArH); $m / z 360$ ($\mathrm{M}^{+}, 34 \%$), 275 (100), 250 (7) and 232 (6).
($4 \mathrm{a} R^{*}, 5 R^{*}, 12 \mathrm{a} R^{*}$)-5-(p-Tolyl)-3,4,4a, 12a-tetrahydro-2H,5Hpyrano $\left.3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $\left.2,1-b\right]$ benzoxazole- 6 -carbonitrile endo-15b and its (5S*)-isomer exo-15b (Table 3, run 7). Compounds endo-15b (239 mg) and exo-15b (42 mg) were prepared from diene $\mathbf{3 b}(430 \mathrm{mg}, 1.65 \mathrm{mmol})$ and dihydropyran $9\left(5 \mathrm{~cm}^{3}, 54 \mathrm{mmol}\right.$). Compound endo-15b: mp 202-204 ${ }^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 76.7; H, 5.7; N, 8.15. Calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 76.7 ; \mathrm{H}, 5.85 ; \mathrm{N}, 8.1 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 2190; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.3-1.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.19(1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), 2.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.3-3.5 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}$), $3.77(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.5, \mathrm{OCH} H), 4.18(1 \mathrm{H}, \mathrm{d}, J 4.6$, NCHCHCHAr), 5.73 ($1 \mathrm{H}, \mathrm{d}, J 3.6$, NCHCHCHAr) and $7.0-$ 7.3 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 344\left(\mathrm{M}^{+}, 34 \%\right.$), 259 (100), 234 (4) and 195 (3). Compound exo-15b: mp 212-213 ${ }^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 76.6; H, 5.7; N, 8.1\%); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2192$ $(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.9-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.5-1.6(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHCHCHAr}), 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.1-3.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$, 3.49 ($1 \mathrm{H}, \mathrm{d}, J 6.6$, NCHCHCHAr), $4.73(1 \mathrm{H}, \mathrm{br}$ d, $J 3.3$, NCHCHCHAr) and 6.6-7.6 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 344$ (M^{+}, 32%), 259 (100), 234 (4) and 195 (2).
($4 \mathrm{a} R^{*}, 5 R^{*}, 12 \mathrm{a} R^{*}$)-5-phenyl-3,4,4a,12a-tetrahydro-2H,5H-
pyrano $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzoxazole-6-carbonitrile endo15 c and its ($5 S^{*}$)-isomer exo-15c (Table 3, run 8). Compounds endo- 15 c (160 mg) and exo-15c (120 mg) were prepared from diene 3 c ($370 \mathrm{mg}, 1.5 \mathrm{mmol}$) and dihydropyran $9\left(5 \mathrm{~cm}^{3}, 54\right.$ mmol). Compound endo-15c: mp $256-257^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 76.2; H, 5.3; N, 8.5. Calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $76.35 ; \mathrm{H}, 5.5 ; \mathrm{N}, 8.5 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2194(\mathrm{CN}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.3-1.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.2-2.3(1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), 3.4-3.5 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}$), $3.7-3.8(1 \mathrm{H}, \mathrm{m}$, OCH H), $4.21(1 \mathrm{H}, \mathrm{d}, J 4.6$, NCHCHCHAr), $5.73(1 \mathrm{H}, \mathrm{d}, J 3.6$, $\mathrm{NCHCHCHAr})$ and $7.0-7.7(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z} 330\left(\mathrm{M}^{+}\right.$, 33%), 245 (100) and 220 (4). Compound exo-15c: mp 194 $195{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 76.1; H, 5.3; N, 8.4%); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2192(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.9-1.3(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.52(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.15\left(2 \mathrm{H}, \mathrm{brs}, \mathrm{OCH}_{2}\right)$, 3.49 ($1 \mathrm{H}, \mathrm{d}, J 6.6$, NCHCHCHAr), $4.72(1 \mathrm{H}, \mathrm{d}, J 3.3$, $\mathrm{NCHCHCHAr}), 6.6-6.8(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.0-7.2(6 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.4-0.8\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.10(1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), 2.66 ($2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 4.8, \mathrm{OCH}_{2}$), $3.01(1 \mathrm{H}, \mathrm{d}, J$ 6.6, NCHCHCHAr), 4.24 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.3$, NCHCHCHAr), $6.1-$ $6.3(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $6.5-6.8(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 330\left(\mathrm{M}^{+}\right.$, 38%), 245 (100) and 220 (5).
($4 \mathrm{a} R^{*}, 5 R^{*}, 12 \mathrm{a} R^{*}$)-5-(4-Chlorophenyl)-3,4,4a,12a-tetra-hydro-2H,5H-pyrano $\left[3^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $[2,1-b]$ benzoxazole-6carbonitrile endo-15d and its ($5 S^{*}$)-isomer exo-15d (Table 3, run 9). Compounds endo-15d (130 mg) and exo-15d (31 mg) were prepared from diene $3 \mathrm{~d}(400 \mathrm{mg}, 1.4 \mathrm{mmol})$ and dihydropyran 9 ($5 \mathrm{~cm}^{3}, 54 \mathrm{mmol}$). Compound endo-15d: mp $272-273^{\circ} \mathrm{C}$ (from acetone) (Found: C, 69.1; H, 4.5; N, 7.75. Calc. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}: \mathrm{C}, 69.15 ; \mathrm{H}, 4.7 ; \mathrm{N}, 7.7 \%$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2194(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25-1.65$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.1-2.25 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}\right), 3.4-3.5(1 \mathrm{H}$, $\mathrm{m}, \mathrm{OCHH}), 3.7-3.8(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH} H), 4.19(1 \mathrm{H}, \mathrm{d}, J 5.9$, NCHCHCHAr), 5.73 ($1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{NCHCHCHAr)} \mathrm{and} 7.0-$ $7.4(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 366\left(\mathrm{M}^{+}, 14 \%\right), 364\left(\mathrm{M}^{+}, 40\right), 279(100)$ and 254 (6). Compound exo-15d: mp $242-244{ }^{\circ} \mathrm{C}$ (from acetone) (Found: C, 68.9; H, 4.55; N, 7.6\%); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2194(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 1.0-1.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.4-1.5$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.1-3.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.37(1 \mathrm{H}, \mathrm{d}$, J6.9, NCHCHCHAr), 4.67($1 \mathrm{H}, \mathrm{d}, J 3.3$, NCHCHCHAr), $6.6-$ 6.8 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.05-7.15 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z $366\left(\mathrm{M}^{+}\right.$, 19%), $364\left(\mathrm{M}^{+}, 51\right), 279$ (100) and 254 (6).
($4 \mathrm{a} R^{*}, 5 R^{*}, 12 \mathrm{a} R^{*}$)-5-(4-Nitrophenyl)-3,4,4a,12-tetrahydro$\mathbf{2 H}, 5 \mathrm{H}$-pyrano $\left.{ }^{3} \mathbf{3}^{\prime}, 2^{\prime}: 5,6\right]$ pyrido $\left.2,1-\mathrm{b}\right]$ benzoxazole-6-carbonitrile endo-15e and its (55^{*})-isomer exo-15e (Table 3, run 10). Compounds endo-15e (65 mg) and exo-15e (129 mg) were prepared from diene 3 e ($500 \mathrm{mg}, 1.7 \mathrm{mmol}$) and dihydropyran 9 ($5 \mathrm{~cm}^{3}$, 54 mmol). Compound endo-15e: mp 295-297 ${ }^{\circ} \mathrm{C}$ (from EtOH-acetone) (Found: C, 67.2; H, 4.4; N, 11.0. Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 67.2 ; \mathrm{H}, 4.55 ; \mathrm{N}, 11.2 \%\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2192(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.2-1.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.1-2.25$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.45-3.55(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHH}), 3.75-$ $3.85(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH} H), 4.34(1 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{NCHCHCHAr}), 5.75$ ($1 \mathrm{H}, \mathrm{d}, J 3.6, \mathrm{NCHCHCHAr}), 7.05-7.2$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.52 (2 H, br d, $J 9.2, \mathrm{ArH}$) and $8.24(2 \mathrm{H}, \mathrm{br}$ d, $J 9.2$, ArH); m/z 375 ($\mathrm{M}^{+}, 45 \%$), 290 (17), 244 (14), 216 (5) and 84 (100). Compound exo-15e: mp 277-280 ${ }^{\circ} \mathrm{C}$ (from acetone) (Found: C, 67.2; H, 4.4; $\mathrm{N}, 11.1 \%) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2194(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)$ 0.9-1.2 (4 H, m, CH 2), 1.3-1.45 ($1 \mathrm{H}, \mathrm{m}$, NCHCHCHAr), 3.1$3.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.36(1 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{NCHCHCHAr}), 3.61$ ($1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{NCHCHCHAr}), 6.6-6.8$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.80 (2 H, br d, J8.6, ArH); m/z 375 (M ${ }^{+}, 43 \%$), 290 (15), 244 (11), 216 (4) and 84 (100).
(E)-2-(Benzothiazol-2-yl)-3-(2-hydroxyphenyl)acrylonitrile
16. This compound $(9.13 \mathrm{~g})$ was prepared from the nitrile $4(5.95$ $\mathrm{g}, 34 \mathrm{mmol}$), salicylaldehyde ($4.89 \mathrm{~g}, 40 \mathrm{mmol}$), triethylamine (9 drops), and EtOH ($30 \mathrm{~cm}^{3}$) by the same manner as for the preparation of compound $2 \mathrm{e}, \mathrm{mp} \mathrm{192-195}{ }^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: C, 69.05; H, 3.5; N, 10.05 . Calc. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}$, $69.05 ; \mathrm{H}, 3.6 ; \mathrm{N}, 10.05 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1670(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}[270$ MHz ; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 7.2-8.2(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.73(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH})$ and $9.11(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}) ; m / z 278\left(\mathrm{M}^{+}, 49 \%\right), 261(100), 252$ (5) and 223 (5)
(E)-2-(Benzoxazol-2-yl)-3-(2-hydroxyphenyl)acrylonitrile 17. This compound (490 mg) was prepared from nitrile $5(322 \mathrm{mg}$, 2.0 mmol), salicylaldehyde ($249 \mathrm{mg}, 2.0 \mathrm{mmol}$), triethylamine (one drop), and $\mathrm{EtOH}\left(10 \mathrm{~cm}^{3}\right)$ in the same manner as for the preparation of compound 2e, mp 193-194 ${ }^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: C, 73.3; H, 3.7; N, 10.7. Calc. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $73.3 ; \mathrm{H}, 3.85 ; \mathrm{N}, 10.7 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2222(\mathrm{CN})$ and $1658(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.1-7.8(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.80$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CH})$ and $9.6-10.7(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}) ; m / z 262\left(\mathrm{M}^{+}\right.$, 51%), 245 (100) and 236 (3).
(E)-3-(2-Allyloxyphenyl)-2-(benzothiazol-2-yl)acrylonitrile 18a. A mixture of the phenol $16(2.09 \mathrm{~g}, 7.5 \mathrm{mmol})$, allyl bromide ($1.31 \mathrm{~g}, 11 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.04 \mathrm{~g}, 7.5 \mathrm{mmol})$ in dry acetone ($30 \mathrm{~cm}^{3}$) was heated at reflux for 8 h . After cooling, the mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was diluted with AcOEt, washed with water, dried over MgSO_{4}, and concentrated under reduced
pressure. The crystalline residue was recrystallized from acetone to give title compound $18 \mathrm{a}(1.47 \mathrm{~g}, 62 \%), \mathrm{mp} 96-99^{\circ} \mathrm{C}$ (Found: C, 71.6; H, 4.2; N, 8.75. Calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}$, $71.7 ; \mathrm{H}, 4.4 ; \mathrm{N}, 8.8 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2226(\mathrm{CN}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.62\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OCH}_{2}\right), 5.34(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and $10.6, \mathrm{CH}=\mathrm{CHH}), 5.45(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and $17.2, \mathrm{CH}=\mathrm{CH} H), 6.06$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.91(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH}), 7.04(1 \mathrm{H}, \mathrm{t}, J 7.6$, ArH), $7.35-7.75$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.84(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}$), 8.06 (1 $\mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 8.30(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH})$ and $8.60[1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(\mathrm{CN})=\mathrm{CH}] ; m / z 318\left(\mathrm{M}^{+}, 13 \%\right), 277$ (11), 261 (100) and 248 (14).
(E)-2-(Benzothiazol-2-yl)-3-\{2-[(E)-but-2-enyloxy]phenyl\}acrylonitrile 18c. This compound ($392 \mathrm{mg}, 59 \%$) was prepared from the phenol 16 ($556 \mathrm{mg}, 2.0 \mathrm{mmol}$), (E)-but-2-enyl bromide $(405 \mathrm{mg}, 3.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(278 \mathrm{mg}, 2.0 \mathrm{mmol})$ and acetone (8 cm^{3}) in the same manner as for the preparation of compound 18a, mp 102-104 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 72.2; H, 4.7; N, 8.4. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 72.25 ; \mathrm{H}, 4.85 ; \mathrm{N}, 8.4 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2224(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.78(3 \mathrm{H}$, dd, $J 1.0$ and 6.3, Me), $4.59\left(2 \mathrm{H}, \mathrm{d}, J 5.6, \mathrm{OCH}_{2}\right), 5.65-6.0(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CHMe}), 6.96(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{t}, J 7.6$, ArH), $7.4-7.55(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.88(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 8.09$ $(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 8.31(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and $7.9, \mathrm{ArH})$ and 8.63 $[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{CN})=\mathrm{CH}] ; m / z 332\left(\mathrm{M}^{+}, 16 \%\right), 315(11), 277$ (19), 261 (100), 248 (14) and 197 (15).
(\boldsymbol{E})-2-(Benzothiazol-2-yl)-3-\{2-[(E)-cinnamoyloxy $]$ phenyl $\}$ -
acrylonitrile 18d. This compound ($331 \mathrm{mg}, 46 \%$) was prepared from compound 16 ($556 \mathrm{mg}, 2.0 \mathrm{mmol}$), cinnamyl bromide ($591 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(278 \mathrm{mg}, 2.0 \mathrm{mmol})$ and acetone ($8 \mathrm{~cm}^{3}$) in the same manner as for the preparation of compound $18 \mathrm{a}, \mathrm{mp} 118-121^{\circ} \mathrm{C}\left(\right.$ from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 76.0; H, 4.55; N, 7.0. Calc. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$: C, $76.1 ; \mathrm{H}, 4.6 ; \mathrm{N}, 7.1 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2224(\mathrm{CN}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.52\left(2 \mathrm{H}, \mathrm{dd}, J 1.3\right.$ and $\left.5.6, \mathrm{OCH}_{2}\right), 6.45(1 \mathrm{H}, \mathrm{td}$, $J 5.6$ and $15.8, \mathrm{PhCH}=\mathrm{C} H), 6.80(1 \mathrm{H}, \mathrm{td}, J 1.3$ and 15.8 , $\mathrm{PhCH}=\mathrm{CH}), 7.0-7.5(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.95$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6$, ArH), $8.08(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}), 8.60[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{CN})=\mathrm{CH}] ; m / z 394$ ($\mathrm{M}^{+}, 100 \%$), 377 (15), 301 (23), 290 (43) and 259 (39).
(E)-3-(2-Allyloxyphenyl)-2-(benzoxazol-2-yl)acrylonitrile 19a. This compound ($306 \mathrm{mg}, 60 \%$) was prepared from the phenol 17 ($446 \mathrm{mg}, 1.7 \mathrm{mmol}$), allyl bromide ($315 \mathrm{mg}, 2.6 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($253 \mathrm{mg}, 1.7 \mathrm{mmol}$) and acetone ($8 \mathrm{~cm}^{3}$) in the same manner as for the preparation of compound 18a, $\mathrm{mp} 103-104^{\circ} \mathrm{C}$ (from acetone) (Found: C, 75.6; H, 4.8; N, 9.4. Calc. for $\left.\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 75.5 ; \mathrm{H}, 4.7 ; \mathrm{N}, 9.3 \%\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2230$ $(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.70\left(2 \mathrm{H}, \mathrm{td}, J 1.5\right.$ and $\left.5.3, \mathrm{OCH}_{2}\right)$, $5.36(1 \mathrm{H}, \mathrm{qd}, J 1.5$ and $10.6, \mathrm{CH}=\mathrm{CHH}), 5.46(1 \mathrm{H}, \mathrm{qd}, J 1.5$ and $17.2, \mathrm{CH}=\mathrm{CH} H$), $6.11(1 \mathrm{H}$, tdd, $J 5.6,10.6$ and 17.2 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.97(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 7.09(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArH})$, 7.4-7.8 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $8.36(1 \mathrm{H}, \mathrm{dd}, J 1.3 \mathrm{and} 7.9, \mathrm{ArH})$ and 8.81 [$1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{CN})=\mathrm{CH}] ; m / z 302\left(\mathrm{M}^{+}, 10 \%\right)$, $285(10), 261$ (10), 245 (100) and 233 (11).
(\boldsymbol{E})-2-(Benzoxazol-2-yl)-3-\{2-[(\boldsymbol{E})-but-2-enyloxy]phenyl\}acrylonitrile 19 c . This compound ($1.59 \mathrm{~g}, 46 \%$) was prepared from the phenol $17(2.88 \mathrm{~g}, 11 \mathrm{mmol})$, (E)-but-2-enyl bromide $(2.22 \mathrm{~g}, 16.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.52 \mathrm{~g}, 11 \mathrm{mmol})$ and acetone (30 cm^{3}) in the same manner as for the preparation of compound 18a, mp $127-128^{\circ} \mathrm{C}$ (from acetone) (Found: C, 75.6; H, 5.2; N, 8.75. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 75.9; $\mathrm{H}, 5.1 ; \mathrm{N}, 8.85 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2230(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.78(3 \mathrm{H}$, $\mathrm{d}, J 6.3, \mathrm{Me}), 4.62\left(2 \mathrm{H}, \mathrm{d}, J 4.6, \mathrm{OCH}_{2}\right), 5.65-6.0(2 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H=\mathrm{C} H \mathrm{Me}), 6.98(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 7.07(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArH})$, $7.35-7.85(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.36(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH})$ and $8.79[1$ $\mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{CN})=\mathrm{CH}] ; m / z 316\left(\mathrm{M}^{+}, 25 \%\right), 299$ (25), 261 (26) and 245 (100).
(E)-2-(Benzoxazol-2-yl)-3-\{2-[(E)-cinnamyloxy]phenyl\}acrylonitrile 19d. A crude mixture was obtained from the phenol 17 ($2.88 \mathrm{~g}, 11 \mathrm{mmol}$), cinnamyl bromide ($4.33 \mathrm{~g}, 22 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$
($1.52 \mathrm{~g}, 11 \mathrm{mmol}$) and acetone $\left(30 \mathrm{~cm}^{3}\right)$ in the same manner as for the preparation of compound 18a. The mixture was subjected to column chromatography on silica gel with hexaneAcOEt (5:2) to give title compound $19 \mathrm{~d}(1.45 \mathrm{~g}, 35 \%)$ and the pentacycle 21d ($873 \mathrm{mg}, 21 \%$). Compound 19d: mp $146-148^{\circ} \mathrm{C}$ (from acetone) (Found: $\mathrm{C}, 79.3 ; \mathrm{H}, 4.9 ; \mathrm{N}, 7.4$. Calc. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 79.35 ; \mathrm{H}, 4.8 ; \mathrm{N}, 7.4 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $2241(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.86(2 \mathrm{H}$, dd, $J 1.7$ and 5.6 , $\left.\mathrm{OCH}_{2}\right), 6.48(1 \mathrm{H}, \mathrm{td}, J 5.6$ and $15.8, \mathrm{PhCH}=\mathrm{CH}), 6.77(1 \mathrm{H}, \mathrm{td}$, $J 1.7$ and $15.8, \mathrm{PhCH}=\mathrm{CH}), 7.04(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{ArH}), 7.10(1 \mathrm{H}$, t, J7.6, ArH), 7.2-7.6 (9 H, m, ArH), 7.75-7.85 (1 H, m, ArH), $8.38(1 \mathrm{H}, \mathrm{dd}, J 1.7$ and $7.9, \mathrm{ArH})$ and $8.85[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{CN})=\mathrm{CH}]$; $m / z 378\left(\mathrm{M}^{+}, 33 \%\right), 361$ (3), 261 (9), 245 (8) and 117 (100). Physical and spectral data of compound 21d are given below.
(E)-2-(Benzothiazol-2-yl)-3-[2-(prop-2-ynyloxy)phenyl]acrylonitrile 18b. This compound ($441 \mathrm{mg}, 66 \%$) was prepared from nitrile 4 ($336 \mathrm{mg}, 2.1 \mathrm{mmol}$), 2-(prop-2-ynyloxy)benzaldehyde ($367 \mathrm{mg}, 2.1 \mathrm{mmol}$), triethylamine (one drop) and EtOH (10 cm^{3}) in the same manner as for the preparation of compound $\mathbf{2 e}, \mathrm{mp} 103-104^{\circ} \mathrm{C}$ (from EtOH) (Found: C, $72.2 ; \mathrm{H}, 4.0 ; \mathrm{N}$, 8.95. Calc. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 72.1 ; \mathrm{H}, 3.8 ; \mathrm{N}, 8.85 \%$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2226(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.58(1 \mathrm{H}$, $\mathrm{t}, J 2.6, \mathrm{CCH}), 4.84\left(2 \mathrm{H}, \mathrm{d}, J 2.6, \mathrm{OCH}_{2}\right), 7.12(1 \mathrm{H}, \mathrm{d}, J 8.3$, ArH), 7.13 (1 H, t, J7.9, ArH), $7.35-7.55$ (3 H, m, ArH), 7.88 (1 H, br d, J7.9, ArH), $8.09(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 8.34(1 \mathrm{H}, \mathrm{d}, J 7.9$, $\mathrm{ArH})$ and $8.60[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{CN})=\mathrm{CH}] ; m / z 316\left(\mathrm{M}^{+}, 6 \%\right), 277(9)$, 261 (100), 248 (14) and 223 (4).
(E)-2-(Benzoxazol-2-yl)-3-[2-(prop-2-ynyloxy)phenyl]acrylonitrile 19 b . This compound ($1.04 \mathrm{~g}, 68 \%$) was prepared from nitrile 5 ($800 \mathrm{mg}, 5.1 \mathrm{mmol}$), 2-(prop-2-ynyloxy)benzaldehyde ($810 \mathrm{mg}, 5.1 \mathrm{mmol}$), triethylamine (one drop) and EtOH (30 cm^{3}) in the same manner as for the preparation of compound 2e, mp 170-172 ${ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 75.95; H, 4.2; N, 9.4. Calc. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 76.0; H, 4.0; N, 9.3\%); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2230(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.58(1 \mathrm{H}$, $\mathrm{t}, J 2.3, \mathrm{CCH}), 4.87\left(2 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{OCH}_{2}\right), 7.1-7.2(2 \mathrm{H}, \mathrm{m}$, ArH), 7.35-7.65 (4 H, m, ArH), 7.75-7.85 (1 H, m, ArH), 8.38 $(1 \mathrm{H}, \mathrm{dd}, J 1.2$ and $8.1, \mathrm{ArH})$ and $8.76[1 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{CN})=\mathrm{CH}] ; m / z$ $300\left(\mathrm{M}^{+}, 9 \%\right), 261$ (7), 245 (100), 233 (6) and 207 (3).

General procedure for the intramolecular Diels-Alder reaction

 of ethers 18, 19 (Table 4)A $0.1-0.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of a substrate (18 or 19) in o dichlorobenzene was heated at reflux. After cooling, the solution was concentrated under reduced pressure to give a crude product (20 or 21), which was purified by column chromatography on silica gel. The reaction time and the yield are shown in Table 4.

($6 \mathrm{a} R^{*}, 14 \mathrm{a} R^{*}$)-6a,14a-Dihydro-6H,7H-[1]benzopyrano-

 [$\left.4^{\prime}, 3^{\prime}: 4,5\right]$ pyrido $\left.2,1-b\right]$ benzothiazole-14-carbonitrile 20a and 8-allyl-3-(benzothiazol-2-yl)coumarin 22 (Table 4, run 1). A crude mixture was obtained from compound $18 \mathrm{a}(600 \mathrm{mg}, 1.9 \mathrm{mmol}$) in o-dichlorobenzene ($20 \mathrm{~cm}^{3}$). The mixture was subjected to column chromatography on silica gel with hexane-AcOEt (5: 2) to give title products $20 \mathrm{a}(188 \mathrm{mg}, 19 \%)$ and $22(64 \mathrm{mg}$, 10%). Compound 20a: mp 224-226 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{AcOEt}$) (Found: C, 71.8; H, 4.5; N, 8.95. Calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$: C, $71.7 ; \mathrm{H}, 4.4 ; \mathrm{N}, 8.8 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2178(\mathrm{CN}) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $0.9-1.15(1 \mathrm{H}$, m, spin saturation at $\delta 3.06$, NOE, 10%, NCHCHCHAr), 2.41 ($1 \mathrm{H}, \mathrm{dd}, J 5.0$ and 12.5, NCHHCHCHAr), 2.47 (1 H , dd, $J 9.2$ and $12.5, \mathrm{NCH} H C H-$ CHAr), $3.06(1 \mathrm{H}, \mathrm{d}, J 5.0$, spin saturation at $\delta 1.03$, NOE, 13%, $\left.\mathrm{NCH}_{2} \mathrm{CHCHAr}\right), 3.20(1 \mathrm{H}$, dd, $J 3.6$ and $11.2, \mathrm{OCHH}), 3.25(1$ $\mathrm{H}, \mathrm{dd}, J 2.6$ and $11.2, \mathrm{OCH} H), 5.61(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 6.25-$ $6.35(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.4-6.7(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.64(1 \mathrm{H}, \mathrm{d}, J$ 7.6, spin saturation at $\delta 3.06, \mathrm{NOE}, 3 \%$, ArH); m/z $318\left(\mathrm{M}^{+}\right.$, 100%) 301 (5), 287 (7), 278 (13) and 174 (52).Compound 22: mp $182-184^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{CHCl}_{3}$)
(Found: $\mathrm{M}^{+}, 319.0666 . \mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{M}, 319.0667$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1728$ and $1713(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $3.74\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.05-5.25(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.95-6.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), 7.3-7.6 (5 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.99(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}), 8.10(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH})$, $9.08(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}-\mathrm{C}=\mathrm{O}) ; m / z 319\left(\mathrm{M}^{+}, 100 \%\right) 303$ (12), 290 (20), 262 (8) and 236 (4).
($6 a R^{*}, 7 S^{*}, 14 a S^{*}$)-7-Methyl-6a,14a-dihydro-6H,7H-[1]benzopyrano $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ pyrido $[2,1-b]$ benzothiazole-14-carbonitrile 20c (Table 4, run 3). This compound (310 mg) was prepared from compound 18c ($500 \mathrm{mg}, 1.5 \mathrm{mmol}$) in o-dichlorobenzene $\left(8 \mathrm{~cm}^{3}\right.$), mp 258-259 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{AcOEt}$) (Found: $\mathrm{C}, 72.1$; $\mathrm{H}, 4.9$; $\mathrm{N}, 8.5$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 72.25 ; \mathrm{H}, 4.85$; N , $8.4 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2172(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.54$ ($3 \mathrm{H}, \mathrm{d}, J 5.9, M e \mathrm{CH}$), $2.24(1 \mathrm{H}, \mathrm{dq}, J 3.2$ and 11.2 , NCHCHCHAr), 3.60 ($1 \mathrm{H}, \mathrm{d}, J 11.2$, NCHCHCHAr), 3.92 (1 $\mathrm{H}, \mathrm{t}, J 11.2, \mathrm{OCHH}), 3.99(1 \mathrm{H}, \mathrm{qd}, J 5.9$ and 11.2, NCHCHCHAr), $4.43(1 \mathrm{H}$, dd, $J 3.2$ and $11.2, \mathrm{OCH} H), 6.87-$ $7.28(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{d}, J 7.9$, ArH) and $7.78(1 \mathrm{H}, \mathrm{d}, J$ 7.8, ArH); $m / z 332\left(\mathrm{M}^{+}, 100 \%\right), 317$ (20), 287 (18) and 261 (21).
($6 \mathrm{a} R^{*}, 7 R^{*}, 14 \mathrm{aS}{ }^{*}$)-7-Phenyl-6a,14a-dihydro-6H,7H-[1]benzopyrano $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ pyrido [2,1-b]benzothiazole-14-carbonitrile 20d (Table 4, run 4). This compound (99 mg) was prepared from compound $18 \mathrm{~d}(110 \mathrm{mg}, 0.28 \mathrm{mmol})$ in o-dichlorobenzene ($2 \mathrm{~cm}^{3}$), mp 227-228 ${ }^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, 76.15; H, 4.7; $\mathrm{N}, 7.2$. Calc. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 76.1 ; \mathrm{H}, 4.6 ; \mathrm{N}, 7.1 \%$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2181(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.55(1 \mathrm{H}$, dq, $J 3.3$ and 10.9, NCHCHCHAr), $3.89(1 \mathrm{H}, \mathrm{d}, J 10.9$, NCHCHCHAr), $3.92(1 \mathrm{H}, \mathrm{t}, J 10.9, \mathrm{OCHH}), 4.43(1 \mathrm{H}, \mathrm{dd}, J$ 3.3 and $10.9, \mathrm{OCH} H), 4.80(1 \mathrm{H}, \mathrm{d}, J 10.9$, NCHCHCHAr), $6.24(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH}), 6.80-7.37(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.89 (1 H, d, J7.9, ArH); $m / z 394$ (M ${ }^{+}, 65 \%$), 301 (4) and 117 (100).
($6 \mathrm{a} R^{*}, 14 \mathrm{a} R^{*}$)-6a,14a-Dihydro-6H,7H-[1]benzopyrano[$\left.4^{\prime}, 3^{\prime}: 4,5\right]$ pyrido[2,1-b]benzoxazole-14-carbonitrile 21a and 8-allyl-3-(benzoxazol-2-yl)coumarin 23 (Table 4, run 5). A crude mixture was obtained from compound $19 \mathrm{a}(500 \mathrm{mg}, 1.7 \mathrm{mmol})$ in o-dichlorobenzene ($15 \mathrm{~cm}^{3}$). The mixture was subjected to column chromatography on silica gel with hexane-AcOEt ($5: 2$) as eluent to give title compounds 21 a ($98 \mathrm{mg}, 21 \%$) and 23 ($63 \mathrm{mg}, 11 \%$). Compound 21a: $\mathrm{mp} 252-253^{\circ} \mathrm{C}$ (from $\left.\mathrm{CHCl}_{3}-\mathrm{AcOEt}\right)$ (Found: $\mathrm{C}, 75.3 ; \mathrm{H}, 4.7 ; \mathrm{N}, 9.3$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 75.5 ; \mathrm{H}, 4.5 ; \mathrm{N}, 9.3 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2177$ $(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CHCl}_{3}\right) 2.5-2.6(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr})$, $3.86(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 12.5 , $\mathrm{NCHHCHCHAr)} ,4.02(1 \mathrm{H}, \mathrm{dd}, J$ 5.3 and $12.5, \mathrm{NCH} H C H C H A r), 4.10\left(1 \mathrm{H}, \mathrm{d}, J 4.6, \mathrm{NCH}_{2}-\right.$ CHCHAr), $4.30(1 \mathrm{H}$, dd, $J 3.9$ and $11.8, \mathrm{OCHH}), 4.40(1$ H , dd, $J 2.6$ and $11.8, \mathrm{OCH} H), 6.75-7.2(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.4-6.7$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.67(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ; m / z 304\left(\mathrm{M}^{+}, 5 \%\right)$, 277 (11), 201 (18), 185 (90) and 93 (100).

Compound 23: mp $143-145^{\circ} \mathrm{C}$ (from $\mathrm{EtOH}-\mathrm{CHCl}_{3}$) (Found: M^{+}, 303.0891. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{3}$ requires $\mathrm{M}, 303.0894$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1752$ and $1733(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.70$ ($2 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), $5.16(1 \mathrm{H}, \mathrm{dd}, J 1.7$ and 9.2, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}\right), 5.21\left(1 \mathrm{H}, J 1.7\right.$ and $\left.13.3, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHH}\right), 6.02$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.9-7.9(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.87(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}-\mathrm{C}=\mathrm{O}) ; m / z 303\left(\mathrm{M}^{+}, 100 \%\right.$), 274 (23), 258 (6), 246 (6) and 220 (4).
($6 \mathrm{a} R^{*}, 7 S^{*}, 14 \mathrm{a} R^{*}$)-7-Methyl-6a,14a-dihydro-6H,7H-[1]benzopyrano $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ pyrido [2,1-b]benzoxazole-14-carbonitrile 21c (Table 4, run 7). This compound (220 mg) was prepared from compound $19 \mathrm{c}(308 \mathrm{mg}, 0.97 \mathrm{mmol})$ in o-dichlorobenzene ($5 \mathrm{~cm}^{3}$), mp 234-235 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{EtOH}$) (Found: C, 75.6; $\mathrm{H}, 5.2 ; \mathrm{N}, 8.9$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 75.9 ; \mathrm{H}, 5.1 ; \mathrm{N}$, $8.85 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2178(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.70(3 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{Me}), 2.22(1 \mathrm{H}, \mathrm{dq}, J 3.3$ and 10.6 , NCHCHCHAr), 3.78 ($1 \mathrm{H}, \mathrm{d}, J 10.9$, NCHCHCHAr), 3.92 (1 $\mathrm{H}, \mathrm{t}, J 10.9, \mathrm{OCHH}), 3.97(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 4.43(1 \mathrm{H}$, dd, J 3.3 and $10.9, \mathrm{OCH} H), 6.88(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 6.94-7.29$
($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{ArH}) ; m / z 316\left(\mathrm{M}^{+}\right.$, 100%), 299 (21), 271 (26) and 245 (20).
($6 \mathrm{a} R^{*}, 7 R^{*}, 14 \mathrm{aS} S^{*}$)-7-Phenyl-6a,14a-dihydro-6H,7H-[1]benzopyrano $\left[4^{\prime}, 3^{\prime}: 4,5\right]$ pyrido $[2,1-b]$ benzoxazole-14-carbonitrile
21d (Table 4, run 8). This compound (245 mg) was prepared from compound 19d ($260 \mathrm{mg}, 0.69 \mathrm{mmol}$) in o-dichlorobenzene ($5 \mathrm{~cm}^{3}$), mp 240-241 ${ }^{\circ} \mathrm{C}$ (from acetone) (Found: C, 79.3; H, 4.95; $\mathrm{N}, 7.55$. Calc. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $79.35 ; \mathrm{H}, 4.8 ; \mathrm{N}$, $7.4 \%) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2189(\mathrm{CN}) ; \delta_{\mathbf{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.60$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHCHCHAr}), 3.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 10.9 , NCHCHCHAr, spin saturation at $\delta 4.74$, NOE, 15%), 4.74 ($1 \mathrm{H}, \mathrm{d}, J 11.6$, NCHCHCHAr), 5.66 ($1 \mathrm{H}, \mathrm{d}, J 7.9$, ArH), $6.77-7.58(11 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.04(1 \mathrm{H}, \mathrm{d}, J 7.9, \mathrm{ArH}) ; m / z 378$ $\left(\mathrm{M}^{+}, 81 \%\right), 361(8), 261$ (10) and 117 (100).

X-Ray structure analysis of compound 12 e

Crystal data. $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}, \quad \mathrm{M}=455.54, \quad T=291 \mathrm{~K}$. Monoclinic, $a=26.961(2), b=9.685(1), c=9.610(1) \AA, \beta=$ 116.34(1) ${ }^{\circ}, V=2248.7(4) \AA^{3}$ (by least-squares refinement on diffractometer angles for 23 automatically centred reflections, $\lambda=1.5418 \AA$), space group $P 2_{1} / a, Z=4, D_{\mathrm{x}}=1.345 \mathrm{~g} \mathrm{~cm}^{-3}$. Yellow prisms. Crystal dimensions: $0.35 \times 0.35 \times 0.35 \mathrm{~mm}^{3}$, $\mu(\mathrm{Cu}-\mathrm{K} \alpha)=1.527 \mathrm{~mm}^{-1}$.
Data collection and processing. Rigaku AFC5 four-circle diffractometer, $\omega / 2 \theta$ scan, $0<2 \theta<120^{\circ}$, graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation; 3345 unique reflections measured giving 2785 with $F_{\mathrm{o}} \geqslant 2.667 \sigma\left(F_{\mathrm{o}}\right)$. No absorption corrections were applied.
Structure analysis. The structure was solved by direct methods using MULTAN 80^{10} and refined by the blockdiagonal matrix least-squares method. The final R-value was $0.058\left(R_{\mathrm{w}}=0.061\right)$. Weighting scheme $w=1 /\left(F_{\mathrm{o}}\right)$. Residual electron density max. 0.40 , min. -0.40 e \AA^{-3}.

X-Ray structure analysis of compound 13a

Crystal data. $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}, \quad \mathrm{M}=424.50, \quad T=291 \mathrm{~K}$. Orthorhombic, $a=9.634(1), b=10.922(1), c=21.209(2) \AA$, $V=2231.6(3) \AA^{3}$ (by least-squares refinement on diffractometer angles for 25 automatically centred reflections, $\lambda=1.5418 \AA$) in the range of $2 \theta=30-60^{\circ}$, space group $P n a 2_{1}, Z=4, D_{\mathrm{x}}=$ $1.263 \mathrm{~g} \mathrm{~cm}^{-3}$. Colourless prisms. Crystal dimensions: $0.40 \times 0.40 \times 0.40 \mathrm{~mm}^{3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=0.674 \mathrm{~mm}^{-1}$.
Data collection and processing. Rigaku AFC5 four-circle diffractometer, $\omega / 2 \theta$ scan, $0<2 \theta<120^{\circ}$, scan speed, automode, graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation; 1714 unique reflections measured giving 1567 with $F_{\mathrm{o}} \geqslant 2.667 \sigma\left(F_{\mathrm{o}}\right)$. No absorption correction was applied.
Structure analysis. The structure was solved by direct methods using SIR 85^{11} and refined by the block-diagonal matrix least-squares method. The final R-value was 0.053 ($R_{\mathrm{w}}=0.070$). Weighting scheme $w=1 /\left(F_{\mathrm{o}}\right)$. Residual electron density max. $0.50, \mathrm{~min} .-0.40$ e \AA^{-3}.

X-Ray structure analysis of compound endo-14b

Crystal data. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}, \mathrm{M}=304.35, T=291 \mathrm{~K}$. Monoclinic, $a=16.158(1), b=11.302(1), c=10.979(1) \AA$, $\beta=116.14(1)^{\circ}, V=1799.8(2) \AA^{3}$ (by least-squares refinement on diffractometer angles for 25 automatically centred reflections, $\lambda=1.5418 \AA$), space group $P 2_{1} / a, Z=4, D_{\mathrm{x}}=$ $1.330 \mathrm{~g} \mathrm{~cm}^{-3}$. Colourless prisms. Crystal dimensions: $0.35 \times$ $0.35 \times 0.25 \mathrm{~mm}^{3}, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=1.652 \mathrm{~mm}^{-1}$.

Data collection and processing. Rigaku AFC5 four-circle diffractometer, $\omega / 2 \theta$ scan, $0<2 \theta<120^{\circ}$, scan speed, automode, graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation; 2672 unique reflections measured giving 2394 with $F_{\mathrm{o}} \geqslant 2.667 \sigma\left(F_{\mathrm{o}}\right)$. No absorption correction applied.

Structure analysis. The structure was solved by direct methods using MULTAN 80^{10} and refined by the blockdiagonal matrix least-squares method. The final R-value was 0.053 ($R_{\mathrm{w}}=0.074$). Weighting scheme $w=1 /\left(F_{\mathrm{o}}\right)$. Residual electron density max. $0.46, \mathrm{~min} .-0.35 \mathrm{e}^{\AA^{-3} .9}$

Acknowledgements

This study was partially supported by a Grant-in-Aid from the Ministry of Education, Science and Culture and by a Special Grant from Meiji College of Pharmacy.

I: Supplementary data: see Instructions for Authors, January issue. Tables of atomic coordinates, bond lengths and bond angles have been deposited at the Cambridge Crystallographic Data Centre.

References

1 (a) D. L. Boger, Tetrahedron, 1983, 39, 2869; (b) D. L. Boger and S. M. Weinreb, Hetero-Diels-Alder Methodology in Organic Synthesis, Academic Press, San Diego, 1987; (c) S. M. Weinreb, in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon Press, Oxford, 1991, vol. 4, p. 401; (d) D. L. Boger, in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon Press, Oxford, 1991, vol. 4, p. 451.
2 (a) Y.-S. Cheng, F. W. Fowler and A. T. Lupo, Jr., J. Am. Chem. Soc., 1981, 103, 2090; (b) Y.-S. Cheng, A. T. Lupo, Jr. and F. W. Fowler, J. Am. Chem. Soc., 1983, 105, 7696; (c) Y. C. Hwang and F. W. Fowler, J. Org. Chem., 1985, 50, 2719; M. Teng and F. W. Fowler; (d) Tetrahedron Lett., 1989, 30, 2481; (e) J. Org. Chem., 1990, 55, 5646; T. Uyehara, I. Suzuki and Y. Yamamoto, Tetrahedron Lett., 1990, 31, 3753; M. E. Jung and Y. M. Choi, J. Org. Chem., 1991, 56, 6729.

3 (a) D. L. Boger and A. M. Kasper, J. Am. Chem. Soc., 1989, 111, 1517; (b) D. L. Boger, W. L. Corbett and J. M. Wiggins, J. Org. Chem., 1990, 55, 2999; (c) D. L. Boger and T. T. Curran, J. Org. Chem., 1990, 55, 5439; (d) D. L. Boger, W. L. Corbett, T. T. Curran and A. M. Kasper, J. Am. Chem. Soc., 1991, 113, 1713; (e) D. L. Boger and S. Nakahara, J. Org. Chem., 1991, 56, 880; (f) D. L. Boger, K. C. Cassidy and S. Nakahara, J. Am. Chem. Soc., 1993, 115, 10733.

4 (a) B. Serckx-Poncin, A.-M. Hesbain-Frisque and L. Ghosez, Tetrahedron Lett., 1982, 23, 3261; (b) Y. Tamura, T. Tsugoshi, Y. Nakajima and Y. Kita, Synthesis, 1984, 930; (c) K. T. Potts, E. B. Walsh and D. Bhattacharjee, J. Org. Chem., 1987, 52, 2285; (d) K. T. Potts, D. Bhattacharjee and E. B. Walsh, J. Chem. Soc., Chem. Commun., 1984, 114; (e) R. E. Dolle, W. P. Armstrong, A. N. Shaw and R. Novetti, Tetrahedron Lett., 1988, 29, 6349; (f) M. Chigr, H. Fillion and A. Rougny, Tetrahedron Lett., 1988, 29, 5913.
5 (a) N. J. Sisti, F. W. Fowler and D. S. Grierson, Synlett, 1991, 816; (b) M. E. Tran Huu Dau, J.-P. Flament, J.-M. Lefour, C. Riche and D. S. Grierson, Tetrahedron Lett., 1992, 33, 2343; (c) C. Trione, L. M. Toledo, S. D. Kuduk, F. W. Fowler and D. S. Grierson, J. Org. Chem., 1993, 58, 2075.

6 M. Sakamoto, A. Nozaka, M. Shimamoto, H. Ozaki, Y. Suzuki, S. Yoshioka, M. Nagano, K. Okamura, T. Date and O. Tamura, Chem. Pharm. Bull., 1994, 42, 1367.
7 K. Saito, S. Kambe and Y. Nakano, Synthesis, 1983, 210.
8 (a) K. N. Houk, J. Am. Chem. Soc., 1973, 95, 4092; (b) I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976, pp. 47-48; (c) Ref. 8b, p. 22.
9 J. Barluenga, M. Tomas, A. Ballesteros and L. A. Lopez, J. Org. Chem., 1991, 56, 5680.
10 MULTAN 80: A computer program for automatic analysis of phase problems; P. Main, G. German and M. M. Woolfson, University of York, England.
11 C. Giaccovazzo, G. L. Casarano, G. Polidori, R. Spagna and D. Viterbo, Acta Crystallogr., Sect. A, 1982, 38, 663; 1987, 43, 22.

Paper 4/06357K
Received 18th October 1994
Accepted 19th December 1994

[^0]: ${ }^{a}$ All the reactions were carried out using 8 mol equiv. of dienophile 7 at $120^{\circ} \mathrm{C}$.

